### Refine

#### Document Type

- Journal article (1)
- Doctoral Thesis (1)

#### Language

- English (2) (remove)

#### Keywords

- superconductivity (2)
- Quecksilbertellurid (1)
- SQUID (1)
- Supraleitung (1)
- TI (1)
- Topologischer Isolator (1)
- induced (1)
- insulator (1)
- josephson junction (1)
- mercury (1)

Strained bulk HgTe is a three-dimensional topological insulator, whose surface electrons have a high mobility (~ 30 000 cm\(^2\)=Vs), while its bulk is effectively free of mobile charge carriers. These properties enable a study of transport through its unconventional surface states without being hindered by a parallel bulk conductance. Here, we show transport experiments on HgTe-based Josephson junctions to investigate the appearance of the predicted Majorana states at the interface between a topological insulator and a superconductor. Interestingly, we observe a dissipationless supercurrent flow through the topological surface states of HgTe. The current-voltage characteristics are hysteretic at temperatures below 1 K, with critical supercurrents of several microamperes. Moreover, we observe a magnetic-field-induced Fraunhofer pattern of the critical supercurrent, indicating a dominant \(2\pi\)-periodic Josephson effect in the unconventional surface states. Our results show that strained bulk HgTe is a promising material system to get a better understanding of the Josephson effect in topological surface states, and to search for the manifestation of zero-energy Majorana states in transport experiments.

The combination of a topological insulator (TI) and a superconductor (S), which together
form a TI/S interface, is expected to influence the possible surface states in the
TI. It is of special interest, if the theoretical prediction of zero energy Majorana states
in this system is verifiable. This thesis presents the experimental realization of such
an interface between the TI strained bulk HgTe and the S Nb and studies if the afore
mentioned expectations are met.
As these types of interfaces were produced for the first time the initial step was
to develop a new lithographic process. Optimization of the S deposition technique as
well as the application of cleaning processes allowed for reproducible fabrication of
structures. In parallel the measurement setup was upgraded to be able to execute the
sensitive measurements at low energy. Furthermore several filters have been implemented
into the system to reduce high frequency noise and the magnetic field control
unit was additionally replaced to achieve the needed resolution in the μT range.
Two kinds of basic geometries have been studied: Josephson junctions (JJs) and
superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts
with a small separation on a HgTe layer. These S/TI/S junctions are one of the
most basic structures possible and are studied via transport measurements. The transport
through this geometry is strongly influenced by the behavior at the two S/TI
interfaces. In voltage dependent differential resistance measurements it was possible
to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are
able to traverse the HgTe gap between both interfaces multiple times while keeping
phase coherence. Additionally using BTK theory it was possible to extract the interface
transparency of several junctions. This allowed iterative optimization for the highest
transparency via lithographic improvements at these interfaces. The increased transparency
and thus the increased coupling of the Nb’s superconductivity to the HgTe
results in a deeper penetration of the induced superconductivity into the HgTe. Due
to this strong coupling it was possible to enter the regime, where a supercurrent is
carried through the complete HgTe layer. For the first time the passing of an induced
supercurrent through strained bulk HgTe was achieved and thus opened the area for
detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded,
which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic
field compared to the JJ geometry allowed to conclude how the junction depends
on the phase difference between both superconducting contacts. Theoretical calculations
predicted a phase periodicity of 4p instead of 2p, if a TI is used as weak link
material between the contacts, due to the presence of Majorana modes. It could clearly
be shown that despite the usage of a TI the phase still was 2p periodic. By varying
further influencing factors, like number of modes and phase coherence length in the
junction, it might still be possible to reach the 4p regime with bound Majorana states
in the future. A good candidate for further experiments was found in capped HgTe
samples, but here the fabrication process still has to be developed to the same quality
as for the uncapped HgTe samples.
The second type of geometry studied in this thesis was a DC-SQUID, which consists
of two parallel JJs and can also be described as an interference device between two JJs.
The DC-SQUID devices were produced in two configurations: The symmetric SQUID,
where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear,
but instead has a 90° bent. These configurations allow to test, if the predicted
uniformity of the superconducting band gap for induced superconductivity in a TI
is valid. While the phase of the symmetric SQUID is not influenced by the shape of
the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID
in case of an uniform band gap and out of phase if p- or d-wave superconductivity
is dominating the transport, due to the 90° junction. As both devices are measured
one after another, the problem of drift in the coil used to create the magnetic field has
to be overcome in order to decide if the oscillations of both types of SQUIDs are in
phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h
the measurements on both configurations have to be conducted in a few hours. Only
then the total shift is small enough to compare them with each other. For this to be
possible a novel measurement system based on a real time micro controller was programmed,
which allows a much faster extraction of the critical current of a device. The
measurement times were reduced from days to hours, circumventing the drift problems
and enabling the wanted comparison. After the final system optimizations it has
been shown that the comparison should now be possible. Initial measurements with
the old system hinted that both types of SQUIDs are in phase and thus the expected
uniform band gap is more likely. With all needed optimizations in place it is now up
to the successors of this project to conclusively prove this last point.
This thesis has proven that it is possible to induce superconductivity in strained
bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and
Kane in 2008 for the appearance of Majorana bound states. Based on this work it is
now possible to further explore induced superconductivity in strained bulk HgTe to
finally reach a regime, where the Majorana states are both stable and detectable.