Refine
Keywords
- positron emission tomography (3)
- molecular imaging (2)
- 18FDG-PET/CT (1)
- 68Ga-DOTATATE (1)
- Atherosclerotic plaque (1)
- Cardiovascular risk factors (1)
- FDG-PET/CT (1)
- IBA-1 (1)
- Macrophage (1)
- Medizin (1)
- Multiple myeloma (1)
- PET (1)
- PRRT (1)
- Parkinson’s disease (1)
- Somatostatin receptor (1)
- TBI (1)
- TSPO (1)
- \(^{11}\)C-Methionine-PET (1)
- \(^{18}\)F-FDG PET/CT (1)
- autoradiography (1)
- bone disease (1)
- cancer treatment (1)
- cholinergic activity (1)
- diffuse (1)
- esophagogastric junction (1)
- experience (1)
- focal (1)
- glioblastoma multiforme (1)
- glioma (1)
- health care (1)
- imaging techniques (1)
- immunohistochemistry (1)
- immunostaining (1)
- isotopes (1)
- levodopa-induced dyskinesia (1)
- macrophages (1)
- magnetic resonance imaging (1)
- management (1)
- microglial cells (1)
- multiple myeloma (1)
- neuroinflammation (1)
- peptide receptor (1)
- photons (1)
- radionuclide therapy (1)
- sarcoidosis (1)
- signal to noise ratio (1)
- somatostatin (1)
- somatostatin receptors (1)
- stem-cell transplantation (1)
- super ultraviolet (1)
- thyroid carcinomas (1)
- treatment response (1)
- weight drop (1)
Institute
- Klinik und Poliklinik für Nuklearmedizin (6)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (2)
- Neurologische Klinik und Poliklinik (2)
- Abteilung für Neuroradiologie (1)
- Institut für Klinische Transfusionsmedizin und Hämotherapie (1)
- Institut für Medizinische Strahlenkunde und Zellforschung (1)
- Klinik und Poliklinik für Strahlentherapie (1)
- Medizinische Klinik und Poliklinik II (1)
- Neurochirurgische Klinik und Poliklinik (1)
- Physiologisches Institut (1)
The aim of this study was to investigate the prognostic value of 18F-fluoro-deoxyglucose positron emission tomography–computed tomography (18F-FDG-PET/CT) in 37 patients with a history of multiple myeloma (MM) and suspected or confirmed recurrence after stem cell transplantation (SCT). All patients had been heavily pre-treated. Time to progression (TTP) and overall survival (OS) were correlated to a number of different PET-derived as well as clinical parameters. Impact on patient management was assessed.
Absence of FDG-avid MM foci was a positive prognostic factor for both TTP and OS (p<0.01). Presence of >10 focal lesions correlated with both TTP (p<0.01) and OS (p<0.05). Interestingly, presence of >10 lesions in the appendicular skeleton proved to have the strongest association with disease progression. Intensity of glucose uptake and presence of extramedullary disease were associated with shorter TTP (p=0.037 and p=0.049, respectively). Manifestations in soft tissue structures turned out to be a strong negative predictor for both, TTP and OS (p<0.01, respectively). PET resulted in a change of management in 30% of patients.
Our data underline the prognostic value of 18F-FDG-PET/CT in MM patients also in the setting of post-SCT relapse. PET/CT has a significant impact on patient management.
Background: Ga-[1,4,7,10-tetraazacyclododecane-N,N0,N00,N000-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) positron emission tomography (PET) is commonly used for the visualization of somatostatin receptor (SSTR)-positive neuroendocrine tumors. SSTR is also known to be expressed on macrophages, which play a major role in inflammatory processes in the walls of coronary arteries and large vessels. Therefore, imaging SSTR expression has the potential to visualize vulnerable plaques. We assessed 68Ga-DOTATATE accumulation in large vessels in comparison to 18F-2-fluorodeoxyglucose (FDG) uptake, calcified plaques (CPs), and cardiovascular risk factors. Methods: Sixteen consecutive patients with neuroendocrine tumors or thyroid cancer underwent both 68Ga-DOTATATE and 18F-FDG PET/CT for staging or restaging purposes. Detailed clinical data, including common cardiovascular risk factors, were recorded. For a separate assessment, they were divided into a high-risk and a low-risk group. In each patient, we calculated the maximum target-to-background ratio (TBR) of eight arterial segments. The correlation of the TBRmean of both tracers with risk factors including plaque burden was assessed. Results: The mean TBR of 68Ga-DOTATATE in all large arteries correlated significantly with the presence of CPs (r = 0.52; p < 0.05), hypertension (r = 0.60; p < 0.05), age (r = 0.56; p < 0.05), and uptake of 18F-FDG (r = 0.64; p < 0.01). There was one significant correlation between 18F-FDG uptake and hypertension (0.58; p < 0.05). Out of the 37 sites with the highest focal 68Ga-DOTATATE uptake, 16 (43.2%) also had focal 18F-FDG uptake. Of 39 sites with the highest 18F-FDG uptake, only 11 (28.2%) had a colocalized 68Ga-DOTATATE accumulation. Conclusions: In this series of cancer patients, we found a stronger association of increased 68Ga-DOTATATE uptake with known risk factors of cardiovascular disease as compared to 18F-FDG, suggesting a potential role for plaque imaging in large arteries. Strikingly, we found that focal uptake of 68Ga-DOTATATE and 18F-FDG does not colocalize in a significant number of lesions.
Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future.
Objective: To investigate the association between levodopa‐induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease.
Methods: This study included 13 Parkinson's disease patients with peak‐of‐dose levodopa‐induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5‐[\(^{123}\)I]iodo‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine single‐photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N‐ω‐fluoropropyl‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)nortropane single‐photon emission computed tomography, to measure dopamine reuptake transporter density and 2‐[\(^{18}\)F]fluoro‐2‐deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed.
Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side.
Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic‐depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression.
Background
Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry.
Methods
A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [\(^{18}\)F]DPA-714 was performed on day 1, 7, and 16 and [\(^{18}\)F]FDG-μPET imaging for energy metabolism on days 2–5 after trauma using freshly synthesized radiotracers. Immediately after [\(^{18}\)F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [\(^{18}\)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1.
Results
Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [\(^{18}\)F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [\(^{18}\)F]FDG uptake on days 2–5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [\(^{18}\)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [\(^{18}\)F]DPA-714 was not increased in autoradiography or in μPET imaging.
Conclusions
[\(^{18}\)F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.
Objectives
The aim of this study is to evaluate the quality of I-124 PET images with and without prompt gamma compensation (PGC) by comparing the recovery coefficients (RC), the signal to noise ratios (SNR) and the contrast to F-18 and Ga-68. Furthermore, the influence of the PGC on the quantification and image quality is evaluated.
Methods
For measuring the image quality the NEMA NU2-2001 PET/SPECT-Phantom was used containing 6 spheres with a diameter between 10 mm and 37 mm placed in water with different levels of background activity. Each sphere was filled with the same activity concentration measured by an independently cross-calibrated dose calibrator. The “hot” sources were acquired with a full 3D PET/CT (Biograph mCT®, Siemens Medical USA). Acquisition times were 2 min for F-18 and Ga-68, and 10 min for I-124. For reconstruction an OSEM algorithm was applied. For I-124 the images were reconstructed with and without PGC. For the calculation of the RCs the activity concentrations in each sphere were determined; in addition, the influence of the background correction was studied.
Results
The RCs of Ga-68 are the smallest (79%). I-124 reaches similar RCs (87% with PGC, 84% without PGC) as F-18 (84%). showing that the quantification of I-124 images is similar to F-18 and slightly better than Ga-68. With background activity the contrast of the I-124 PGC images is similar to Ga-68 and F-18 scans. There was lower background activity in the I-124 images without PGC, which probably originates from an overcorrection of the scatter contribution. Consequently, the contrast without PGC was much higher than with PGC. As a consequence PGC should be used for I-124.
Conclusions
For I-124 there is only a slight influence on the quantification depending on the use of the PGC. However, there are considerable differences with respect to I-124 image quality.
Sarcoidosis is a multisystem granulomatous disorder of unknown etiology that can involve virtually all organ systems. Whereas most patients present without symptoms, progressive and disabling organ failure can occur in up to 10% of subjects. Somatostatin receptor (SSTR)-directed peptide receptor radionuclide therapy (PRRT) has recently received market authorization for treatment of SSTR-positive neuroendocrine tumors.
Methods:
We describe the first case series comprising two patients with refractory multi-organ involvement of sarcoidosis who received 4 cycles of PRRT.
Results:
PRRT was well-tolerated without any acute adverse effects. No relevant toxicities could be recorded during follow-up. Therapy resulted in partial response accompanied by a pronounced reduction in pain (patient #1) and stable disease regarding morphology as well as disease activity (patient #2), respectively.
Conclusion:
Peptide receptor radionuclide therapy in sarcoidosis is feasible and might be a new valuable tool in patients with otherwise treatment-refractory disease. Given the long experience with and good tolerability of PRRT, further evaluation of this new treatment option for otherwise treatment-refractory sarcoidosis in larger patient cohorts is warranted.
Background
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM.
Methods
15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry.
Results
The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns.
Conclusion
SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.