### Refine

#### Year of publication

#### Document Type

- Journal article (37)
- Preprint (1)

#### Keywords

- Organische Chemie (35)
- boron (2)
- carbenes (2)
- diborenes (2)
- diradicals (2)
- Hyperfine coupling constants (1)
- Indirect and direct contributions to A<sub>iso</sub> (1)
- Influence of excitation classes (1)
- Spin density (1)
- chemical bonding (1)

A reliable prediction of the isotropic hyperfine coupling constant A\(_{iso}\) is still a difficult task for ab initio calculations. In previous studies, the configuration selected multireference configuration interaction method in combination with perturbation theory to correct the wave function (MRCI/ B\(_K\)) yielded accurate isotropic hyperfine coupling constants very economically. The present study gives a detailed analysis of the MRCI/ B\(_K\) method based on the X\(^2 \pi\) state of CH as a test case. Furthermore, a comparison to various other methods such as Maller-Ptesset perturbation theory and the coupled cluster approach is made. The success of the MRCI/ B\(_K\) method in predicting isotropic hyperfine coupling constants is explained in terms of the inßuence of higher than double excitations.

The hyperfine structure of the two isoelectronic molecules H\(_2\)CN and H\(_2\)CO\(^+\) in their electronic ground state (X\(^2\)B\(_2\)) is studied. The influence of the atomic orbital (AO), basis sets, of the correlation treatment, and of the. equilibrium geometry on the obtained hyperfine propertles 1s - investigated. It is found that the multireference double excitation-configuration interaction (MRD-CI)/ BK treatment in which an MRD-CI wave function is corrected by a modified B\(_K\) method yields equivalent results to quadratic CI [QCISD(T)], coupled cluster single doubles [CCSD(T)), or Brueckner doubled [BD(T)]. Uncertainties in the equilibrium geometries are found to be the major source for discrepancies between theoretically and experimentally determined isotropic hyperfine coupling constants (hfccs). For the heavier centers, the calculated values of the isotropic hfccs agrees nearly perfectly with experimental values (\(\approx\) 1%-2%). The calculated values for the hydrogens are too low, but using the equilibrium structure suggested by Yamamoto and Sato [J. Chem. Phys. 96, 4157 ( 1992)], the best estimate deviates by less than 3%.

No abstract available

In the present work the dimethylamino radical ( ( CH\(_3\)) \(_2\)N) and its protonated cation ( ( CH\(_3\))\(_2\)NH\(^+\)) are investigated by means of ab initio methods. The geometries of various conformations of both compounds are obtained with UMP2/6·31 G** calculations, while the hyperfine structure and its dependence on the geometry is studied using the MRD-Cl/B\(_K\) method. The two molecules are compared to study the inftuence of the protonation on geometry and hyperfine structure. The effects of the rotational barriers on the hyperfine structures of (CH\(_3\))\(_2\)N, (CH\(_3\)CH\(_2\))\(_2\)N and ( (CH\(_3\))\(_2\)CH)\(_2\)N will be discussed.

Large-scale multireference configuration interaction calculations in a double·t·type AO basis including polarization functions are carried out for the potential surface of the ClC\(_2\)H\(_4\9 system. The charge distribution for various extreme points of the surface is discussed. The absolute minimum is found for an asymmetric ClC2H4 structure. The symmetrical bridged nuclear conformation is also found to be stable with respect to dissociation into Cl + C\(_2\)H\(_4\)• The activation energy for rotation about the C-C axis is calculated tobe around 18 kJ/mol, which is comparable tothat for the 1,2 migration {around 26 kJ/mol). The stereochemistry is governed by the fact that addition of CI to C\(_2\)H\(_4\) (or dissociation) is a two-step reaction proceeding through a symmetrica1 intermediate. The direct addition pathway possesses a small barrier of about 8 kJ jmol.

Potential energy and spectroscopic constants for the X\(^2 \sum^+ _\mu\) ground state of a;, were calculated by configuration-interaction (Cl) methods, using large basis sets with polarization and diffuse functions. From these CI wavefunctions, the isotropic (a\(_{iso}\)) and dipolar (A\(_{dip}\)) components of the hyperfine coupling constant were obtained. The effects of various s, p basis sets, polarization and diffuse functions, as well as the influence of reference configurations and configuration selection thresholds were investigated. The best values obtained are 35·31 G for a\(_{iso}\) and 29·440 for A\(_{dip}\)• tobe compared with experimental values of 37 ± 1 G and 32 ± 1 G, respectively. It is shown that the contributions to a1so of the K and L shells are opposite in sign, differing by about 4 G. Upon vibrational averaging, both a\(_{iso}\) and A\(_{dip}\) move towards smaller values as v increases. An adiabatic electron affinity of 2·46eV was obtained for CL\(_2\) , and a vertical electron detachment energy of 3·71 eV for Cl;.

Study of the hyperfine coupling constants of the moleculs NH<sub>2</sub>, NHD and ND<sub>2</sub>
(1990)

In the present paper we c:alculate tbe magnetic hyperfine couplina constants (hfcc) ai.ID and A11 of the ground states of the isotopes NH2, NHD and ND2 using truncated MR..CI methods. Differences from other theoretical methocls and shortoominp of the truncated Cl approach in calculating tlj10 are studied. Polarization effects wbich detennirae ailo. as weU as a simple model to describe the dipolar hfcc's, are discussed. All results are in. excellent aareement with experimental data. lt is shown that ab initio methods are able to obtain reliable values for otf-diaaonal values of A41 which are difficult to measure experimentaDy.