### Refine

Density functional theory is applied to the calculation ofthe isotropic byperfine coupJing constants in some small molecules. Various functionals are tested. The agreement of the calculated values to experimental data and values obtained from sophisticated ab initio methods depends on the functionals used and the system under consideration. With respect to spin density calculations the functional of Lee, Yang and Parr with Becke's excbange functional (BLYP) is found to give good results for tbe heavier center of the CH and the NH molecule, while the spin densities of other molecules such as OH, H\(_2\)CN, H\(_2\)CO\(^+\), NO and O\(_2\) deviate considerably from experimental and/or other theoretical results (30%-60%). In cases where the singly occupied orbital can contribute to the isotropic hyperfine coupling constants, accurate results are obtained. The reason fortbis is analyzed.

The energy difference between the three lowest-lying isomers of C\(_6\) the linear \(^3 \sum ^-\) state and the two ring forms,the benzene structure (\(^1\)A\(_{18}\)) possessing D\(_{6h}\) symmetry and a distorted cyclic form ( \(^1\)A'\(_1\), D\(_{3h}\) symmetry) have been calculated using various ab initio methods. Variational methods such as multireference configuration interaction (MR-CI) and complete active space second order perturbatiOn treatment (CASPT2) have been applied, as weil as perturbational treatments and coupled cluster calculations (CCD). The correlation of all valence shell electrons is found to be important for a balanced description of the isomers of C\(_6\) . Methods which do not account for higher-order effects appropriately proved to be unsuitable for calculating the energy difference correctly. The results from multireference configuration interaction methods show that the isomers are close in energy with the cyclic forms somewhat lower than the linear form. The ring form possessing D\(_{3h}\) symmetry (\(^1\)A'\(_1\)} is found tobe the lowest-lying structure.