Refine
Has Fulltext
- yes (29)
Is part of the Bibliography
- yes (29)
Year of publication
Document Type
Language
- English (29)
Keywords
- Physiologische Chemie (10)
- Schwertkärpfling (4)
- Onkogen (2)
- Xiphophorus (2)
- evolutionary genetics (2)
- Acipenser baerii (1)
- Annotation (1)
- DM-domain gene (1)
- DNS (1)
- Egfr (1)
Polyploid genomes present a challenge for cytogenetic and genomic studies, due to the high number of similar size chromosomes and the simultaneous presence of hardly distinguishable paralogous elements. The karyotype of the Siberian sturgeon (Acipenser baerii) contains around 250 chromosomes and is remarkable for the presence of paralogs from two rounds of whole-genome duplications (WGD). In this study, we applied the sterlet-derived acipenserid satDNA-based whole chromosome-specific probes to analyze the Siberian sturgeon karyotype. We demonstrate that the last genome duplication event in the Siberian sturgeon was accompanied by the simultaneous expansion of several repetitive DNA families. Some of the repetitive probes serve as good cytogenetic markers distinguishing paralogous chromosomes and detecting ancestral syntenic regions, which underwent fusions and fissions. The tendency of minisatellite specificity for chromosome size groups previously observed in the sterlet genome is also visible in the Siberian sturgeon. We provide an initial physical chromosome map of the Siberian sturgeon genome supported by molecular markers. The application of these data will facilitate genomic studies in other recent polyploid sturgeon species.
The Xiphophorus tumor system has provided the opportunity to reduce the enormous complexity of cancer etiology to a few biological elements basically involved in neoplasia. The development of a tumor requires an oncogene which, after impairment, deletion, or elimination of its regulatory genes is permitted to mediate neoplastic transformation. Emphasis is being placed today in cancer research on the actual oncogenes themselves, but, in our opinion, the most important genes involved in neoplasia are these regulatory genes. However, although detected by c1assical genetics in the Xiphophorus system, th ese genes are not at present open to a more fin ely detailed molecular biological analysis. Their actual mode of action is therefore still far from being understood.
Melanoma formation in the poeciliid fish Xiphophorus is mediated primarily by a cellular oncogene, designated Tu. Elimination of Tu-specific genes releases the transforming function of Tu and leads to melanoma formation. Southern blot analyses revealed a tight linkage of a v-erb B related gene to the Tu-locus and Northern blot analyses of RNA of solid melanomas indicated a coordinated deregulation and for mutational activation of several oncogenes. In order to get a better insight into the regulation of oncogene expression in normal and transformed cells of Xiphophorus, we studied the expression of Xsrc, Xras, Xmyc, Xerb A, Xsis, and the v-erb B related gene in a melanoma derived cell line (PSM) and an embryonic cell line (A2) under conditions of low growth factor supply. Both celllines express the Xsrc, Xmyc, and Xras genes, while PSM cells in addition express the v-erb B related gene and A2 cells the Xsis gene. In PSM cells serum deprivation leads to an accumulation of most of the oncogene mRNAs analysed. This is most apparent for a 5.0 kb transcript of the v-erb B related gene, probably due to an increase in transcript stability. The levels of these mRNAs returned to normal within 2h after stimulation with 10% fetal calf serum. At the protein level we observed an initial decrease followed by an increase of the n-p60c-src kinase (the protein product of tbe Xsrc gene) activity in cells deprived of serum. Serum stimulation restored a normal pp60"-src kinase activity. In contrast serum deprivation of A2 cells reduced the transcript amounts of each of the oncogenes analysed. The same holds true for one beta-tubulin transcript, while the level of a second beta-tubulin transcript was unaffected. Serum stimulation led to a reactivation of Xras and Xsrc after a delay of approximately 48b. The pp60(c-src) kinase activity was found to be 6-10 times lower as compared to the PSM cells and did not differ between serum deprived and serum stimulated cells. Enzyme activities and isoenzyme patterns of several glycolytic enzymes were found to be not affected by serum deprivation and stimulation in both celllines.
A panel of simple repetitive oligonucleotide probes has been designed and tested for multilocus DNA fingerprinting in some 200 fungal, plant and animal species as well as man. To date at least one of the probes has been found to be informative in each species. The human genome, however, has been the major target of many fingerprintins studies. Using the probe (CAC)5 or (GTG)5, individualization of all humans is possible except for monozygotic twins. Paternity analyses are now perfonned on a routine basis by the use of multilocus fingerprints, inctuding also cases of deficiency, i.e. where one of the parents is not available for analysis. In forensie science stain analysis is feasible in all tissue remains containing nuc)eated cells. Depending on the degree of DNA degradation a variety of oligonucleotides are informative, and they have been proven useful in actual case work. Advantages in comparison to other methods including enzymatic DNA amplification techniques (PCR) are evident. Fingerprint patterns of tumors may be changed due to the gain or loss of chromosomes and/or intrachromosomal deletion and amplification events. Locus-specific probes were isolated from the human (CAC)5/( GTG)5 fingerprint with a varying degree of informativeness (monomorphic versus truly hypervariable markers). The feasibility of three different approaches. for the isolation of hypervariable mono-locus probes was evaluated. Finally, one particular mixed simple (gt)n(ga)m repeat locus in the second intron of the HLA-DRB genes has been scrutinized to allow comparison of the extent of exon-encoded (protein-) polymorphisms versus intronie bypervariability of simple repeats: adjacent to a single gene sequence (e.g. HLA-DRB1*0401) many different length alleles were found. Group-specific structures of basic repeats were identified within the evolutionarily related DRB alleles. As a further application it is suggested here that due to the ubiquitous interspersion of their targets, short probes for simple repeat sequences are especially useful tools for ordering genomic cosmid, yeast artificial chromosome and phage banks.