Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (3)
- Doctoral Thesis (1)
Language
- English (4)
Keywords
- pain (2)
- Blood nerve barrier (1)
- Diabetic painful neuropathy (1)
- Neuropathic pain (1)
- Specialized pro resolving mediators (1)
- TRPA1 (1)
- Traumatic neuropathy (1)
- barrier (1)
- capsaicin (1)
- claudin-5 (1)
Background
High doses of capsaicin are recommended for the treatment of neuropathic pain. However, low doses evoke mechanical hypersensitivity. Activation of the capsaicin chemosensor transient receptor potential vanilloid 1 (TRPV1) induces neurogenic inflammation. In addition to the release of pro-inflammatory mediators, reactive oxygen species are produced. These highly reactive molecules generate oxidised phospholipids and 4-hydroxynonenal (4-HNE) which then directly activate TRP ankyrin 1 (TRPA1). The apolipoprotein A-I mimetic peptide D-4F neutralises oxidised phospholipids. Here, we asked whether D-4F ameliorates neurogenic hypersensitivity in rodents by targeting reactive oxygen species and 4-HNE in the capsaicin-evoked pain model.
Results
Co-application of D-4F ameliorated capsaicin-induced mechanical hypersensitivity and allodynia as well as persistent heat hypersensitivity measured by Randell–Selitto, von Frey and Hargreaves test, respectively. In addition, mechanical hypersensitivity was blocked after co-injection of D-4F with the reactive oxygen species analogue H2O2 or 4-HNE. In vitro studies on dorsal root ganglion neurons and stably transfected cell lines revealed a TRPA1-dependent inhibition of the calcium influx when agonists were pre-incubated with D-4F. The capsaicin-induced calcium influx in TRPV1-expressing cell lines and dorsal root ganglion neurons sustained in the presence of D-4F.
Conclusions
D-4F is a promising compound to ameliorate TRPA1-dependent hypersensitivity during neurogenic inflammation.
Diabetic polyneuropathy (DPN) is the most common complication in diabetes and can be painful in up to 26% of all diabetic patients. Peripheral nerves are shielded by the blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels. So far, there are conflicting results regarding the role and function of the BNB in the pathophysiology of DPN. In this study, we analyzed the spatiotemporal tight junction protein profile, barrier permeability, and vessel-associated macrophages in Wistar rats with streptozotocin-induced DPN. In these rats, mechanical hypersensitivity developed after 2 weeks and loss of motor function after 8 weeks, while the BNB and the blood-DRG barrier were leakier for small, but not for large molecules after 8 weeks only. The blood-spinal cord barrier remained sealed throughout the observation period. No gross changes in tight junction protein or cytokine expression were observed in all barriers to blood. However, expression of Cldn1 mRNA in perineurium was specifically downregulated in conjunction with weaker vessel-associated macrophage shielding of the BNB. Our results underline the role of specific tight junction proteins and BNB breakdown in DPN maintenance and differentiate DPN from traumatic nerve injury. Targeting claudins and sealing the BNB could stabilize pain and prevent further nerve damage.
Abstract
Neuropathic pain affects 6.9 to 10% of the general population, arises from lesion or disease of the somatosensory nervous system and is still challenging to treat. Indeed, current treatments efficacy are relatively low and present strong side effects. To that extent, identifying new targets and developing new treatment strategies constitute a priority. The blood nerve barrier consists of the endoneurial micro-blood vessels and the perineurium sealed by tight junctions constituted of tight junction proteins such claudin-5 and claudin-1. As the functional blood nerve barrier allows nerve tissue protection from external elements and maintains homeostasis, a destabilization or a disruption leads to infiltration of immunocytes promoting neuroinflammation and increased inflammatory mediators that can sensitize nociceptors and enhance pain. Thus resealing the blood nerve barrier in case of neuropathic pain could be a possible treatment strategy.
Specialised proresolving mediators such lipoxin A4 and resolvin D1 are small lipids that bind to receptors such the formylpeptide recptor 2 (FPR2) and resolve inflammation. Specially resolvin D1 as anti-inflammatory and analgesic properties. Thus using resolvin D1 or eventually other specialized proresolving mediators in neuropathic pain could reseal the blood nerve barrier and resolve neuropathic pain. The present work aimed to characterize the blood nerve barrier in a preclinical model of diabetic polyneuropathy and nerve injury (chronic constriction injury) and to identify specialized proresolving mediators that seal the blood nerve barrier and thereby alleviate neuropathic pain.
In diabetic polyneuropathy, the blood nerve barrier is permeable only to small molecules, which is due to the loss of claudin-1 in the perineurium and a reduced number of blood vessel- associated macrophages. Interestingly, blood nerve barrier permeability did not occur until four to eight weeks after diabetes induction, whereas mechanical hyperalgesia was measurable as early as two weeks. This suggests a pain-maintaining rather than a pain-triggering role of the blood nerve barrier.
In case of chronic constriction injury, a resolution process of both mechanical and thermal hyperalgesia occurs between three to six weeks after injury. Here, the blood nerve barrier is permeable to both small and large molecules from the beginning. The pain recovery process occurs primarily in parallel with the sealing of the endoneurial barrier to large molecules such as fibrinogen from the plasma and its degradation. Perineurium is still permeable nine weeks after injury. Metabolomic analyses show that especially precursors of Resolvin D1 as well as its receptor FPR2, are upregulated at the beginning of pain resolution. Application of resolvin
D1 loaded nanoparticles or agonists of FPR2 at the injury site before the onset of pain resolution accelerates the process and fibrinogen is no longer detectable in the endoneurium. Depending on the nerve damage, the blood nerve barrier is affected to varying degrees. Direct mechanical trauma and the accompanying inflammation lead to a more pronounced and long-lasting permeability - independent hyperalgesia. Possibly permeability, at least for small molecules, is important for prolonged reparative processes. In the nerve, permeability of capillaries in particular depends not only on tight junctions but also on other cells: in addition to macrophages, pericytes could also have a sealing effect. Endoneurial fibrinogen triggers pain; the exact mechanism remains to be investigated. Resolvin-containing nanoparticles were particularly effective and could be used locally as they contain endogenous substances in non- toxic particles.
The nervous system is shielded by special barriers. Nerve injury results in blood–nerve barrier breakdown with downregulation of certain tight junction proteins accompanying the painful neuropathic phenotype. The dorsal root ganglion (DRG) consists of a neuron-rich region (NRR, somata of somatosensory and nociceptive neurons) and a fibre-rich region (FRR), and their putative epi-/perineurium (EPN). Here, we analysed blood–DRG barrier (BDB) properties in these physiologically distinct regions in Wistar rats after chronic constriction injury (CCI). Cldn5, Cldn12, and Tjp1 (rats) mRNA were downregulated 1 week after traumatic nerve injury. Claudin-1 immunoreactivity (IR) found in the EPN, claudin-19-IR in the FRR, and ZO-1-IR in FRR-EPN were unaltered after CCI. However, laser-assisted, vessel specific qPCR, and IR studies confirmed a significant loss of claudin-5 in the NRR. The NRR was three-times more permeable compared to the FRR for high and low molecular weight markers. NRR permeability was not further increased 1-week after CCI, but significantly more CD68\(^+\) macrophages had migrated into the NRR. In summary, NRR and FRR are different in naïve rats. Short-term traumatic nerve injury leaves the already highly permeable BDB in the NRR unaltered for small and large molecules. Claudin-5 is downregulated in the NRR. This could facilitate macrophage invasion, and thereby neuronal sensitisation and hyperalgesia. Targeting the stabilisation of claudin-5 in microvessels and the BDB barrier could be a future approach for neuropathic pain therapy.