Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (3)
Language
- English (3)
Keywords
- Schlaganfall (1)
- biodegradable (1)
- case report (1)
- immunodrug delivery (1)
- intraosseous (1)
- lymph nodes (1)
- mandible (1)
- nanogels (1)
- polycarbonates (1)
- pseudocarcinomatous hyperplasia (1)
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox42/2) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox42/2 mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.
Background
Mandibular pseudocarcinomatous hyperplasia is a rare and generally benign pathology. We report on one of these rare cases.
Case presentation
The case history of a 73-year-old white man stated that he had a carcinoma of the oropharynx, which was primarily treated with radiotherapy and chemotherapy 4 years prior. As a result of radiotherapy he developed an osteoradionecrosis of his mandible and a consecutive pathological fracture of his left mandibular angle. Subsequent osteosynthesis was performed with a reconstruction plate. When we first saw him, his reconstruction plate was partially exposed with intraoral and extraoral fistulation. The resected bone of his defect-bordering jaw showed the typical pathohistological findings of an intraosseous mandibular pseudocarcinomatous hyperplasia. After a first reconstruction attempt with an iliac crest graft failed, definitive reconstruction of his mandible with a microvascular anastomosed fibula graft was achieved.
Conclusions
Intraosseous pseudocarcinomatous hyperplasia of the mandible is a rare differential diagnosis in maxillofacial surgery. Besides other benign epithelial neoplasms, such as calcifying epithelial odontogenic tumor, squamous odontogenic tumor, or different forms of ameloblastoma, the far more frequent invasive squamous cell carcinoma needs to be excluded. A misinterpretation of pseudocarcinomatous hyperplasia as squamous cell carcinoma must be avoided because it can lead to a massive overtreatment.
The development of controlled biodegradable materials is of fundamental importance in immunodrug delivery to spatiotemporally controlled immune stimulation but avoid systemic inflammatory side effects. Based on this, polycarbonate nanogels are developed as degradable micellar carriers for transient immunoactivation of lymph nodes. An imidazoquinoline‐type TLR7/8 agonist is covalently conjugated via reactive ester chemistry to these nanocarriers. The nanogels not only provide access to complete disintegration by the hydrolysable polymer backbone, but also demonstrate a gradual disintegration within several days at physiological conditions (PBS, pH 6.4–7.4, 37 °C). These intrinsic properties limit the lifetime of the carriers but their payload can still be successfully leveraged for immunological studies in vitro on primary immune cells as well as in vivo. For the latter, a spatiotemporal control of immune cell activation in the draining lymph node is found after subcutaneous injection. Overall, these features render polycarbonate nanogels a promising delivery system for transient activation of the immune system in lymph nodes and may consequently become very attractive for further development toward vaccination or cancer immunotherapy. Due to the intrinsic biodegradability combined with the high chemical control during the manufacturing process, these polycarbonate‐based nanogels may also be of great importance for clinical translation.