Refine
Has Fulltext
- yes (16)
Is part of the Bibliography
- yes (16)
Document Type
- Preprint (9)
- Journal article (7)
Keywords
- boron (8)
- diborenes (5)
- Boron (3)
- Bor (2)
- DFT calculations (2)
- multiple bonds (2)
- 1,2-additions (1)
- DFT (1)
- Diborane (1)
- Diboren (1)
Institute
Sonstige beteiligte Institutionen
The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2−}\) causes a decrease in the B–B bond order whereas the B–C bond orders increase.
Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene.
The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) (6) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C\(_{14}\)) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO-LUMO gap (HLG) and ultimately an unprecedented anthryl B–B bond hydroarylation. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV–vis absorption spectrum (THF, λ\(_{onset}\) = 788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B–B and C\(^1\)–H bonds of 8 were cleaved to give the cyclic 1,9-diboraanthracene 9.
Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1’-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.
sp\(^2\)–sp\(^3\) diborane species based on bis(catecholato)diboron and N-heterocyclic carbenes (NHCs) are subjected to catechol/bromide exchange selectively at the sp\(^3\) boron atom. The reduction of the resulting 1,1-dibromodiborane adducts led to reductive coupling and isolation of doubly NHC-stabilized 1,2-diboryldiborenes. These compounds are the first examples of molecules exhibiting pelectron delocalization over an all-boron chain.
The lability of B=B, B-P and B-halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes demonstrate cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange.
A doubly base-stabilized diborane based on a benzylphosphine linker was prepared by a salt elimination reaction between 2-LiC\(_6\)H\(_4\)CH\(_2\)PCy\(_2\).Et\(_2\)O and B\(_2\)Br\(_4\). This compound was reduced with KC8 to its corresponding diborene, with the benzylphosphine forming a five-membered chelate. The diborene reacts with butadiene, 2-trimethylsiloxy-1,3-butadiene and isoprene to form 4,5-diboracyclohexenes, which interconvert between their 1,1- (geminal) and 1,2- (vicinal) chelated isomers. The 1,1-chelated diborene undergoes a halide-catalysed isomerisation into its thermodynamically favoured 1,2-isomer, which undergoes Diels-Alder reactions more slowly than the kinetic product.
Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.
The reductive coupling of an NHC-stabilized aryldibromoborane yields a mixture of trans- and cis-diborenes in which the aryl groups are coplanar with the diborene core. Under dilute reduction conditions two diastereomers of a borirane-borane intermediate are isolated, which upon further reduction give rise to the aforementioned diborene mixture. DFT calculations suggest a mechanism proceeding via nucleophilic attack of a dicoordinate borylene intermediate on the aryl ring and subsequent intramolecular B-B bond formation.
Herein, we describe the selective formation of a stable neutral spiroborate radical by one-electron oxidation of the corresponding tetraorganoborate salt Li[B(C\(_4\)Ph\(_4\))\(_2\)], formally containing a tetrahedral borate centre and a s-cis-butadiene radical cation as the spin-bearing site. Spectroscopic and computational methods have been used to determine the spin distribution and the chromism observed in the solid state.