Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (1)
- Doctoral Thesis (1)
Language
- English (2)
Keywords
- Dionaea muscipula (1)
- Venusfliegenfalle (1)
- action potential (1)
- biophysics (1)
- carnivorous plants (1)
- defence mechanisms (1)
- drug discovery (1)
- jasmonic acid (1)
- mechanosensation (1)
- molecular pathways (1)
Institute
Plants do not have neurons but operate transmembrane ion channels and can get electrical excited by physical and chemical clues. Among them the Venus flytrap is characterized by its peculiar hapto-electric signaling. When insects collide with trigger hairs emerging the trap inner surface, the mechanical stimulus within the mechanosensory organ is translated into a calcium signal and an action potential (AP). Here we asked how the Ca\(^{2+}\) wave and AP is initiated in the trigger hair and how it is feed into systemic trap calcium-electrical networks. When Dionaea muscipula trigger hairs matures and develop hapto-electric excitability the mechanosensitive anion channel DmMSL10/FLYC1 and voltage dependent SKOR type Shaker K\(^{+}\) channel are expressed in the sheering stress sensitive podium. The podium of the trigger hair is interface to the flytrap’s prey capture and processing networks. In the excitable state touch stimulation of the trigger hair evokes a rise in the podium Ca2+ first and before the calcium signal together with an action potential travel all over the trap surface. In search for podium ion channels and pumps mediating touch induced Ca\(^{2+}\) transients, we, in mature trigger hairs firing fast Ca\(^{2+}\) signals and APs, found OSCA1.7 and GLR3.6 type Ca\(^{2+}\) channels and ACA2/10 Ca\(^{2+}\) pumps specifically expressed in the podium. Like trigger hair stimulation, glutamate application to the trap directly evoked a propagating Ca\(^{2+}\) and electrical event. Given that anesthetics affect K\(^+\) channels and glutamate receptors in the animal system we exposed flytraps to an ether atmosphere. As result propagation of touch and glutamate induced Ca\(^{2+}\) and AP long-distance signaling got suppressed, while the trap completely recovered excitability when ether was replaced by fresh air. In line with ether targeting a calcium channel addressing a Ca\(^{2+}\) activated anion channel the AP amplitude declined before the electrical signal ceased completely. Ether in the mechanosensory organ did neither prevent the touch induction of a calcium signal nor this post stimulus decay. This finding indicates that ether prevents the touch activated, glr3.6 expressing base of the trigger hair to excite the capture organ.
Plants are able to sense mechanical forces in order to defend themselves against predators,
for instance by synthesizing repellent compounds. Very few plants evolved extremely sensitive
tactile abilities that allow them to perceive, interpret and respond by rapid movement in the
milliseconds range. One such rarity is the charismatic Venus flytrap (Dionaea muscipula) - a
carnivorous plant which relies on its spectacular active trapping strategy to catch its prey. The
snapping traps are equipped with touch-specialised trigger hairs, that upon bending elicit an
action potential (AP). This electrical signal originates within the trigger hairs’ mechanosensory
cells and further propagates throughout the whole trap, alerting the plant of potential prey.
Two APs triggered within thirty seconds will set off the trap and more than five APs will
initiate the green stomach formation for prey decomposition and nutrient uptake. Neither
the molecular components of the plant’s AP nor the Venus flytrap’s fast closure mechanism
have been fully elucidated yet. Therefore, the general objective of this study is to expound
on the molecular basis of touch perception: from AP initiation to trap closure and finally to
stomach formation.
The typical electrical signal in plants lasts for minutes and its shape is determined by the
intensity of the mechanical force applied. In contrast, the Venus flytrap’s one-second AP is of
all-or-nothing type, similar in shape to the animal AP. In order to gain more insight into the
molecular components that give rise to the Venus flytrap’s emblematic AP, the transcriptomic
landscape of its unique mechanotransducer - the trigger hair – was compared to the rest
of the non-specialised tissues and organs. Additionally, the transcriptome of the electrically
excitable fully-developed adult trap was compared to non-excitable juvenile traps that are
unable to produce sharp APs. Together, the two strategies helped with the identification of
electrogenic channels and pumps for each step of the AP as follows: (1) the most specific to
the trigger hair was the mechanosensitive channel DmMSL10, making up the best candidate for
the initial AP depolarization phase, (2) the K+ outward rectifier DmSKOR could be responsible
for repolarisation, (3) further, the proton pump DmAHA4, might kick in during repolarisation
and go on with hyperpolarisation and (4) the hyperpolarization- and acid-activated K+ inward
rectifier KDM1 might contribute to the re-establishment of electrochemical gradient and
the resting potential. Responsible for the AP-associated Ca2+ wave and electrical signal
propagation, the glutamate-like receptor DmGLR3.6 was also enriched in the trigger hairs.
Together, these findings suggest that the reuse of genes involved in electrical signalling in
ordinary plants can give rise to the Venus flytrap’s trademark AP.
The Venus flytrap has been cultivated ever since its discovery, generating more than one
hundred cultivars over the years. Among them, indistinguishable from a normal Venus flytrap
at first sight, the ’ERROR’ cultivar exhibits a peculiar behaviour: it is unable to snap its traps
upon two APs. Nevertheless, it is still able to elicit normal APs. To get a better understanding
of the key molecular mechanisms and pathways that are essential for a successful trap closure,
the ’ERROR’ mutant was compared to the functional wild type.
Timelapse photography led to the observation that the ’ERROR’ mutants were able to leisurely
half close their traps when repeated mechanostimulation was applied (10 minutes after 20
APs, 0.03 Hz). As a result of touch or wounding in non-carnivorous plants, jasmonic acid
(JA) is synthesized, alerting the plants of potential predators. Curiously, the JA levels were reduced upon mechanostimulation and completely impaired upon wounding in the ’ERROR’
mutant. In search of genes accountable for the ’ERROR’ mutant’s defects, the transcriptomes
of the two phenotypes were compared before and after mechanostimulation (1h after 10
APs, 0.01 Hz). The overall dampened response of the mutant compared to the wild type,
was reflected at transcriptomic level as well. Only about 50% of wild type’s upregulated
genes after touch stimulation were differentially expressed in ’ERROR’ and they manifested
only half of the wild type’s expression amplitude. Among unresponsive functional categories
of genes in ’ERROR’ phenotype, there were: cell wall integrity surveilling system, auxin
biosynthesis and stress-related transcription factors from the ethylene-responsive AP2/ERF and
C2H2-ZF families. Deregulated Ca2+-decoding as well as redox-related elements together with
JA-pathway components might also contribute to the malfunctioning of the ’ERROR’ mutant. As
the mutant does not undergo full stomach formation after mechanical treatment, these missing
processes represent key milestones that might mediate growth-defence trade-offs under JA
signalling. This confirms the idea that carnivory has evolved by recycling the already available
molecular machineries of the ubiquitous plant immune system.
To better understand the mutant’s defect in the trap snapping mechanism, the ground states
(unstimulated traps) of the two phenotypes were compared. In this case, many cell wall-related
genes (e.g. expansins) were downregulated in the ’ERROR’ mutant. For the first time, these
data point to the importance of a special cell wall architecture of the trap, that might confer
the mechanical properties needed for a functional buckling system - which amplifies the speed
of the trap closure.
This study provides candidate channels for each of the AP phases that give rise to and shape
the sharp Venus flytrap-specific AP. It further underlines the possible contribution of the cell
wall architecture to the metastable ready-to-snap configuration of the trap before stimulation
- which might be crucial for the buckling-dependent snapping. And finally, it highlights
molecular milestones linked to defence responses that ensure trap morphing into a green
stomach after mechanostimulation. Altogether, these processes prove to be interdependent
and essential for a successful carnivorous lifestyle.