Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Language
- English (3)
Keywords
- ADHD (1)
- Cadherin-13 (CDH13) (1)
- SLC2A3 (1)
- cadherin-13 (1)
- human induced pluripotent stem cell (hiPSC) (1)
- induced pluripotent stem cells (1)
- median and dorsal raphe (1)
- neurodevelopment (1)
- neuropsychiatric disorders (1)
- serotonin (1)
Institute
- Physiologisches Institut (2)
- Graduate School of Life Sciences (1)
- Institut für Anatomie und Zellbiologie (1)
- Institut für Humangenetik (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Lehrstuhl für Molekulare Psychiatrie (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)
Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.
Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in early
developmental processes such as cell proliferation, migration, and differentiation.
Recent research in humans showed that the brain 5-HT system and CDH13 are
interlinked in the genetics of neurodevelopmental disorders including attention-
deficit/hyperactivity disorder and autism spectrum disorder (Lesch et al., 2008;
Neale et al., 2008; Neale, Medland, Ripke, Anney, et al., 2010; Neale, Medland,
Ripke, Asherson, et al., 2010; Sanders et al., 2011; Sanders et al., 2015; Zhou et
al., 2008). This study introduces Cadherin-13 (CDH13), a cell adhesion protein, as
a contributor to the development and function of the 5-HT system. Our
experiments show that the absence of CDH13 increases the density of 5-HT
neurons in the developing dorsal raphe (DR) and increases the 5-HT innervation
of the prefrontal cortex in mouse embryonic stages. CDH13 is also observed in
radial glial cells, an important progenitor cell type linked to neuronal migration.
A three-dimensional reconstruction carried out with super-resolution microscopy,
identifies 5-HT neurons intertwined with radial glial cells, and CDH13 clusters at
contact points between these cells. This indicates a potential contribution of
CDH13 to the migration of DR 5-HT neurons. As CDH13 is strongly expressed in
5-HT neurons, we asked whether the selective deletion of CDH13 from these cells
is sufficient to generate the alterations observed in the Cdh13 constitutive
knockout mouse line.
In 5-HT conditional Cdh13 knockout mice (Cdh13 cKO) an increase in DR 5-HT
neurons in the embryonic and adult brains is observed, as well as 5-HT
hyperinnervation of cortical regions. Therefore, illustrating that the lack of CDH13
from 5-HT neurons alone impacts DR formation and serotonergic innervation.
Behavioral testing conducted on Cdh13 cKO mice showed delayed learning in
visuospatial learning and memory processing, as well as, changes in sociability
parameters. To find out how CDH13 localizes in human 5-HT neurons, CDH13 was
visualized in neurons that derived from human induced pluripotent stem cells
(iPSC). Super-resolution microscopy confirmed CDH13 expression in a subgroup
of induced human neurons positive for typical hallmarks of 5-HT neurons, such as
expression of Tph2, the neuron-specific tryptophan hydroxylase, and synaptic
structures. In summary, the work included in this thesis presents a detailed
analysis of CDH13 expression and localization in the 5-HT system and shows that
deletion of CDH13 from 5-HT neurons affects specific higher-order functions of the
brain.