Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (4)
Language
- English (4)
Keywords
- schizophrenia (2)
- CA4 (1)
- anaemia (1)
- aneurysmal subarachnoid haemorrhage (1)
- anterior cingulate cortex (1)
- bipolar disorders (1)
- cell proliferation (1)
- cognitive-behavioural psychotherapy (1)
- dentate gyrus (1)
- early intervention (1)
As a consequence of obstetric complications, neonatal hypoxia has been discussed as an environmental factor in the pathophysiology of schizophrenia. However, the biological consequences of hypoxia are unclear. The neurodevelopmental hypothesis of schizophrenia suggests that the onset of abnormal brain development and neuropathology occurs perinatally, whereas symptoms of the disease appear in early adulthood. In our animal model of chronic neonatal hypoxia, we have detected behavioral alterations resembling those known from schizophrenia. Disturbances in cell proliferation possibly contribute to the pathophysiology of this disease. In the present study, we used postnatal rats to investigate cell proliferation in several brain areas following neonatal hypoxia. Rats were repeatedly exposed to hypoxia (89 % N2, 11 % O2) from postnatal day (PD) 4–8. We then evaluated cell proliferation on PD 13 and 39, respectively. These investigations were performed in the anterior cingulate cortex (ACC), caudate-putamen (CPU), dentate gyrus, and subventricular zone. Rats exposed to hypoxia exhibited increased cell proliferation in the ACC at PD 13, normalizing at PD 39. In other brain regions, no alterations have been detected. Additionally, hypoxia-treated rats showed decreased CPU volume at PD 13. The results of the present study on the one hand support the assumption of chronic hypoxia influencing transient cell proliferation in the ACC, and on the other hand reveal normalization during ageing.
Background: Bipolar disorders (BD) are among the most severe mental disorders with first clinical signs and symptoms frequently appearing in adolescence and early adulthood. The long latency in clinical diagnosis (and subsequent adequate treatment) adversely affects the course of disease, effectiveness of interventions and health-related quality of life, and increases the economic burden of BD. Despite uncertainties about risk constellations and symptomatology in the early stages of potentially developing BD, many adolescents and young adults seek help, and most of them suffer substantially from symptoms already leading to impairments in psychosocial functioning in school, training, at work and in their social relationships. We aimed to identify subjects at risk of developing BD and investigate the efficacy and safety of early specific cognitive-behavioural psychotherapy (CBT) in this subpopulation.
Methods/Design: EarlyCBT is a randomised controlled multi-centre clinical trial to evaluate the efficacy and safety of early specific CBT, including stress management and problem solving strategies, with elements of mindfulness-based therapy (MBT) versus unstructured group meetings for 14 weeks each and follow-up until week 78. Participants are recruited at seven university hospitals throughout Germany, which provide in-and outpatient care (including early recognition centres) for psychiatric patients. Subjects at high risk must be 15 to 30 years old and meet the combination of specified affective symptomatology, reduction of psychosocial functioning, and family history for (schizo) affective disorders. Primary efficacy endpoints are differences in psychosocial functioning and defined affective symptomatology at 14 weeks between groups. Secondary endpoints include the above mentioned endpoints at 7, 24, 52 and 78 weeks and the change within groups compared to baseline; perception of, reaction to and coping with stress; and conversion to full BD.
Discussion: To our knowledge, this is the first study to evaluate early specific CBT in subjects at high risk for BD. Structured diagnostic interviews are used to map the risk status and development of disease. With our study, the level of evidence for the treatment of those young patients will be significantly raised.
Purpose
Anaemia is common in patients presenting with aneurysmal subarachnoid (aSAH) and intracerebral haemorrhage (ICH). In surgical patients, anaemia was identified as an idenpendent risk factor for postoperative mortality, prolonged hospital length of stay (LOS) and increased risk of red blood cell (RBC) transfusion. This multicentre cohort observation study describes the incidence and effects of preoperative anaemia in this critical patient collective for a 10-year period.
Methods
This multicentre observational study included adult in-hospital surgical patients diagnosed with aSAH or ICH of 21 German hospitals (discharged from 1 January 2010 to 30 September 2020). Descriptive, univariate and multivariate analyses were performed to investigate the incidence and association of preoperative anaemia with RBC transfusion, in-hospital mortality and postoperative complications in patients with aSAH and ICH.
Results
A total of n = 9081 patients were analysed (aSAH n = 5008; ICH n = 4073). Preoperative anaemia was present at 28.3% in aSAH and 40.9% in ICH. RBC transfusion rates were 29.9% in aSAH and 29.3% in ICH. Multivariate analysis revealed that preoperative anaemia is associated with a higher risk for RBC transfusion (OR = 3.25 in aSAH, OR = 4.16 in ICH, p < 0.001), for in-hospital mortality (OR = 1.48 in aSAH, OR = 1.53 in ICH, p < 0.001) and for several postoperative complications.
Conclusions
Preoperative anaemia is associated with increased RBC transfusion rates, in-hospital mortality and postoperative complications in patients with aSAH and ICH.
Decreased oligodendrocyte number in hippocampal subfield CA4 in schizophrenia: a replication study
(2022)
Hippocampus-related cognitive deficits in working and verbal memory are frequent in schizophrenia, and hippocampal volume loss, particularly in the cornu ammonis (CA) subregions, was shown by magnetic resonance imaging studies. However, the underlying cellular alterations remain elusive. By using unbiased design-based stereology, we reported a reduction in oligodendrocyte number in CA4 in schizophrenia and of granular neurons in the dentate gyrus (DG). Here, we aimed to replicate these findings in an independent sample. We used a stereological approach to investigate the numbers and densities of neurons, oligodendrocytes, and astrocytes in CA4 and of granular neurons in the DG of left and right hemispheres in 11 brains from men with schizophrenia and 11 brains from age- and sex-matched healthy controls. In schizophrenia, a decreased number and density of oligodendrocytes was detected in the left and right CA4, whereas mean volumes of CA4 and the DG and the numbers and density of neurons, astrocytes, and granular neurons were not different in patients and controls, even after adjustment of variables because of positive correlations with postmortem interval and age. Our results replicate the previously described decrease in oligodendrocytes bilaterally in CA4 in schizophrenia and point to a deficit in oligodendrocyte maturation or a loss of mature oligodendrocytes. These changes result in impaired myelination and neuronal decoupling, both of which are linked to altered functional connectivity and subsequent cognitive dysfunction in schizophrenia.