Refine
Has Fulltext
- yes (18)
Is part of the Bibliography
- yes (18)
Document Type
- Journal article (18)
Language
- English (18)
Keywords
- NAFLD (4)
- NASH (3)
- fatty liver disease (3)
- obesity (3)
- apoptosis (2)
- fibrosis (2)
- inflammation (2)
- intestine (2)
- 25-hydroxycholesterol 7 alpha-hydroxylase (1)
- Breath tests (1)
Institute
- Medizinische Klinik und Poliklinik II (17)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (2)
- Pathologisches Institut (2)
- Institut für Klinische Epidemiologie und Biometrie (1)
- Institut für Klinische Transfusionsmedizin und Hämotherapie (1)
- Institut für Molekulare Infektionsbiologie (1)
- Institut für Pharmakologie und Toxikologie (1)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (1)
- Medizinische Klinik und Poliklinik I (1)
- Rudolf-Virchow-Zentrum (1)
EU-Project number / Contract (GA) number
- 678119 (1)
Nonalcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2) and its oxysterol ligand 7 alpha,25-dihydroxycholesterol (7 alpha,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in the livers of NASH patients by LC-MS and tested the role of the EBI2-7 alpha,25-diHC system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared with controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype-related differences were observed in Ebi2(-/-) mice and mice with defects in the 7 alpha,25-diHC synthesizing enzymes CH25H and CYP7B1 compared with wild-type littermate controls, arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by the enhanced level of 7 alpha-hydroxycholest-4-en-3-one and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH.
Psoriasis is an immune-mediated systemic inflammatory disease that is not limited to the skin but may be associated with arthritis, cardiovascular diseases, metabolic syndrome including diabetes and obesity and, as identified more recently, non-alcoholic fatty liver disease (NAFLD) that occurs in approximately 50 % of all patients with psoriasis. NAFLD is characterized by accumulation of fat in hepatocytes in the absence of excessive alcohol consumption. Over the last two decades, NAFLD has developed to the most common chronic liver disease with an estimated prevalence of 25 % in the Western population. NAFLD ranges from non-inflammatory or bland hepatic steatosis to inflammation of hepatic tissue (non-alcoholic steatohepatitis, NASH) and consecutive liver fibrosis. It is controversial whether the underlying systemic inflammation of psoriasis is contributing to development of NAFLD or if comorbid diseases such as obesity enhance NAFLD development. Recent findings indicate that cytokine-mediated inflammation through TNFα, interleukin (IL)-6 and IL-17 might be the common link between psoriasis and NAFLD. Considering the shared inflammatory pathways, IL-17 pharmacological blockade, which is already well-established for psoriasis, may be a promising strategy to treat both psoriasis and NAFLD. Therefore, early detection of NAFLD and a better understanding of its pathophysiology in the context of the systemic inflammation in psoriasis is important with regard to individualized treatment approaches.
Background & aims
Serum interferon-gamma-inducible protein-10 (IP-10) is elevated in cholestatic liver diseases and predicts response to antiviral therapy in patients with chronic hepatitis C virus (HCV) infection. Dipeptidylpeptidase 4 (DPPIV) cleaves active IP-10 into an inactive form, which inhibits recruitment of CXCR3+ T cells to the liver. In this study the link between IP-10 levels, DPPIV activity in serum and CXCR3+ T cells is analysed in cholestatic and non-cholestatic liver patients.
Methods
In serum DPPIV activity (by enzymatic assay), IP-10 (by ELISA) and bile acids (BA) (by enzymatic assay) were analysed in 229 naive HCV genotype (GT) 1 patients and in 16 patients with cholestatic liver disease. In a prospective follow-up (FU) cohort of 27 HCV GT 1 patients peripheral CD3+CXCR3+, CD4+CXCR3+ and CD8+CXCR3+ cells were measured by FACS.
Results
In 229 HCV patients serum IP-10 levels correlated positively to DPPIV serum activity. Higher IP-10 levels and DPPIV activity were detected in cholestatic and in cirrhotic HCV patients. Increased IP-10 serum levels were associated with therapeutic non-response to antiviral treatment with pegylated-interferon and ribavirin. In the HCV FU cohort elevated IP-10 serum levels and increased BA were associated with higher frequencies of peripheral CD3+CXCR3+, CD4+CXCR3+ and CD8+CXCR3+ T cells. Positive correlation between serum IP-10 levels and DPPIV activity was likewise validated in patients with cholestatic liver diseases.
Conclusions
A strong correlation between elevated serum levels of IP-10 and DPPIV activity was seen in different cholestatic patient groups. Furthermore, in cholestatic HCV patients a functional link to increased numbers of peripheral CXCR3+ immune cells could be observed. The source of DPPIV release in cholestatic patients remains open.
Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance
(2016)
Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests.
Objective
At high altitude (HA), acute mountain sickness (AMS) is accompanied by neurologic and upper gastrointestinal symptoms (UGS). The primary aim of this study was to test the hypothesis that delayed gastric emptying (GE), assessed by \(^{13}\)C-octanoate breath testing (OBT), causes UGS in AMS. The secondary aim was to assess post-gastric mechanisms of OBT, which could confound results under these conditions, by determination of intermediary metabolites, gastrointestinal peptides, and basal metabolic rate.
Methods
A prospective trial was performed in 25 healthy participants (15 male) at 4559 m (HA) and at 490 m (Zurich). GE was assessed by OBT (428 kcal solid meal) and UGS by visual analogue scales (VAS). Blood sampling of metabolites (glucose, free fatty acids (FFA), triglycerides (TG), beta-hydroxyl butyrate (BHB), L-lactate) and gastrointestinal peptides (insulin, amylin, PYY, etc.) was performed as well as blood gas analysis and spirometry. Statistical analysis: variance analyses, bivariate correlation, and multilinear regression analysis.
Results
After 24 h under hypoxic conditions at HA, participants developed AMS (p < 0.001). \(^{13}\)CO\(_{2}\) exhalation kinetics increased (p < 0.05) resulting in reduced estimates of gastric half-emptying times (p < 0.01). However, median resting respiratory quotients and plasma profiles of TG indicated that augmented beta-oxidation was the main predictor of accelerated \(^{13}\)CO\(_{2}\)-generation under these conditions.
Conclusion
Quantification of \(^{13}\)C-octanoate oxidation by a breath test is sensitive to variation in metabolic (liver) function under hypoxic conditions. \(^{13}\)C-breath testing using short-chain fatty acids is not reliable for measurement of gastric function at HA and should be considered critically in other severe hypoxic conditions, like sepsis or chronic lung disease.
Direct-acting antiviral drugs (DAAs) are currently replacing antiviral therapy for Hepatitis C infection. Treatment related side effects are even worse and the emergence of resistant viruses must be avoided because of the direct-antiviral action. Altogether it remains a challenge to take treatment decisions in a clinical setting with cost restrictions. Genetic host factors are hereby essential to implement an individualized treatment concept. In recent years results on different genetic variants have been published with a strong association with therapy response, fibrosis and treatment-related side effects. Polymorphisms of the IL28B gene were identified as accurate predictors for therapy response and spontaneous clearance of HCV infection and are already used for diagnostic decisions. For RBV-induced side effects, such as hemolytic anemia, associations to genetic variants of inosine triphosphatase (ITPA) were described and different SLC28 transporters for RBV-uptake have been successfully analyzed. Fibrosis progression has been associated with variants of Vitamin D receptor (VDR) and ABCB11 (bile salt export pump). Cirrhotic patients especially have a high treatment risk and low therapy response, so that personalized antiviral treatment is mandatory. This review focuses on different host genetic variants in the pathogenesis of Hepatitis C at the beginning of a new area of treatment.
Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice
(2016)
Type 2 diabetes (T2DM) and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD) and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS) production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten), a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE) staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs) were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin.
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Background
Ribavirin blood levels vary considerably between patients with standard weight-based dosing. Their impact on sustained virological response (SVR) with pegylated interferon and ribavirin is controversial, but has mostly been studied before the IL28b gene polymorphism as a possible confounder was discovered.
Methods
The impact of serum ribavirin trough levels at week 4, at the end of treatment and of mean levels across the entire antiviral treatment with pegylated interferon and ribavirin on relapse, SVR rates and anemia was retrospectively studied by univariate and multivariable logistic regression analyses in 214 patients with HCV genotype 1–4 infection, including 88 patients with available IL28b genotyping.
Results
Mean ribavirin levels varied between 0.68–5.65 mg/l and significantly differed between patients with or without SVR. By multivariable regression including age, sex, HCV viral load, HCV genotype, liver fibrosis stage, prior treatments, immunosuppression and IL28b genotype, ribavirin levels consistently displayed significant influence on SVR and relapse without indication for a specific importance of higher concentrations early or late in the treatment course. Although hemoglobin decline was on average more pronounced in patients with higher ribavirin levels, hemoglobin remained relatively stable in a significant proportion of these, indicating that ribavirin levels alone are insufficient to predict anemia.
Conclusion
While data are scarce to draw conclusions applicable for modern DAA therapies, these results support ribavirin treatment based on serum levels instead of purely weight-based dosing in combination with pegylated interferon.
Objectives
Liver biopsies are the current gold standard in non-alcoholic steatohepatitis (NASH) diagnosis. Their invasive nature, however, still carries an increased risk for patients' health. The development of non-invasive diagnostic tools to differentiate between bland steatosis (NAFL) and NASH remains crucial. The aim of this study is the evaluation of investigated circulating microRNAs in combination with new targets in order to optimize the discrimination of NASH patients by non-invasive serum biomarkers.
Methods
Serum profiles of four microRNAs were evaluated in two cohorts consisting of 137 NAFLD patients and 61 healthy controls. In a binary logistic regression model microRNAs of relevance were detected. Correlation of microRNA appearance with known biomarkers like ALT and CK18-Asp396 was evaluated. A simplified scoring model was developed, combining the levels of microRNA in circulation and CK18-Asp396 fragments. Receiver operating characteristics were used to evaluate the potential of discriminating NASH.
Results
The new finding of our study is the different profile of circulating miR-21 in NASH patients (p<0.0001). Also, it validates recently published results of miR-122 and miR-192 to be differentially regulated in NAFL and NASH. Combined microRNA expression profiles with CK18-Asp396 fragment level scoring model had a higher potential of NASH prediction compared to other risk biomarkers (AUROC = 0.83, 95% CI = 0.754-0.908; p<0.001). Evaluation of score model for NAFL (Score = 0) and NASH (Score = 4) had shown high rates of sensitivity (91%) and specificity (83%).
Conclusions
Our study defines candidates for a combined model of miRNAs and CK18-Asp396 levels relevant as a promising expansion for diagnosis and in turn treatment of NASH.