Refine
Has Fulltext
- yes (12)
Is part of the Bibliography
- yes (12)
Document Type
- Journal article (11)
- Doctoral Thesis (1)
Keywords
- Allelic loss (1)
- Amplification (1)
- Atherosclerosis, intracranial arteries (1)
- Attraktivität (1)
- CXCL10 (1)
- Children (1)
- Gesicht (1)
- Heparan-sulfate (1)
- IFNG (1)
- Lippen (1)
Institute
- Medizinische Klinik und Poliklinik II (3)
- Neurologische Klinik und Poliklinik (2)
- Institut für Experimentelle Biomedizin (1)
- Institut für Psychologie (1)
- Institut für Theoretische Physik und Astrophysik (1)
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (1)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (1)
- Lehrstuhl für Biochemie (1)
- Physikalisches Institut (1)
- Poliklinik für Kieferorthopädie (1)
EU-Project number / Contract (GA) number
- 262773 (1)
Wilms tumor (WT) is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA) processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA) differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT
Viele der in der kieferorthopädischen Therapie verwendeten Messwerte stammen aus methodisch zumindest fragwürdigen Quellen. Um diese Werte zu überprüfen und den Einfluss einzelner Weichteilparameter auf die Attraktivität des Gesichtsprofils zu untersuchen, wurden von einem Durchschnittsgesicht in der Saggitalen verschiedene Variationen erstellt, wobei pro Bilderreihe jeweils nur ein Parameter verändert wurde. Zu untersuchende Parameter waren: Die Profiltypen nach AM Schwarz, das Gesichtshöhenverhältnis nach Kollman, Holdawaywinkel, Z-Winkel (Merrifield), Nasofacialwinkel, Nasolabialwinkel (obere und untere Komponente) sowie die Nasenlänge. Die Bilderserien wurden von Probanden hinsichtlich der Attraktivität bewertet und eine statistische Auswertung erstellt. Dabei wurden die nach hinten schiefen Gesichter deutlich besser bewertet als die geraden und nach vorne schiefen Profilverläufe. Ein über die untere Komponente verkleinerter Nasolabialwinkel wurde am besten bewertet. Ein flacheres Lippenprofil wurde im Holdaway- und Z-Winkel tendenziell besser bewertet.
SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (similar to 68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s less than or similar to 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line.
Background
Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium \((K_{2P})\) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing \(K^+\) leak currents, and the pacemaker channel HCN2, carrying depolarizing \(I_h\), stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts.
Methods
In C57Bl/6 (wildtype, WT), \(hcn2^{+/+}\) and \(hcn2^{-/-}\) mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays.
Results
After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55%. However, 30 min of tMCAO in hcn2-/- as well as hcn2+/+ littermates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups.
Conclusions
Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model.
Several studies report autoantibody signatures in cancer. The majority of these studies analyzed adult tumors and compared the seroreactivity pattern of tumor patients with the pattern in healthy controls. Here, we compared the autoimmune response in patients with neuroblastoma and patients with Wilms tumor representing two different childhood tumors. We were able to differentiate untreated neuroblastoma patients from untreated Wilms tumor patients with an accuracy of 86.8%, a sensitivity of 87.0% and a specificity of 86.7%. The separation of treated neuroblastoma patients from treated Wilms tumor patients' yielded comparable results with an accuracy of 83.8%. We furthermore identified the antigens that contribute most to the differentiation between both tumor types. The analysis of these antigens revealed that neuroblastoma was considerably more immunogenic than Wilms tumor. The reported antigens have not been found to be relevant for comparative analyses between other tumors and controls. In summary, neuroblastoma appears as a highly immunogenic tumor as demonstrated by the extended number of antigens that separate this tumor from Wilms tumor.
Background
Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium \((K_{2P})\) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing \(K^+\) leak currents, and the pacemaker channel HCN2, carrying depolarizing Ih, stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts.
Methods
In C57Bl/6 (wildtype, WT), \(hcn2^{+/+}\) and \(hcn2^{-/-}\) mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays.
Results
After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55%. However, 30 min of tMCAO in hcn2-/- as well as hcn2+/+ littermates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups.
Conclusions
Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model.
Multiple myeloma management has undergone profound changes in the past thanks to advances in our understanding of the disease biology and improvements in treatment and supportive care approaches. This article presents recommendations of the European Myeloma Network for newly diagnosed patients based on the GRADE system for level of evidence. All patients with symptomatic disease should undergo risk stratification to classify patients for International Staging System stage (level of evidence: 1A) and for cytogenetically defined high-versus standard-risk groups (2B). Novel-agent-based induction and up-front autologous stem cell transplantation in medically fit patients remains the standard of care (1A). Induction therapy should include a triple combination of bortezomib, with either adriamycin or thalidomide and dexamethasone (1A), or with cyclophosphamide and dexamethasone (2B). Currently, allogeneic stem cell transplantation may be considered for young patients with high-risk disease and preferably in the context of a clinical trial (2B). Thalidomide (1B) or lenalidomide (1A) maintenance increases progression-free survival and possibly overall survival (2B). Bortezomib-based regimens are a valuable consolidation option, especially for patients who failed excellent response after autologous stem cell transplantation (2A). Bortezomib-melphalan-prednisone or melphalan-prednisone-thalidomide are the standards of care for transplant-ineligible patients (1A). Melphalan-prednisone-lenalidomide with lenalidomide maintenance increases progression-free survival, but overall survival data are needed. New data from the phase III study (MM-020/IFM 07-01) of lenalidomide-low-dose dexamethasone reached its primary end point of a statistically significant improvement in progression-free survival as compared to melphalan-prednisone-thalidomide and provides further evidence for the efficacy of lenalidomide-low-dose dexamethasone in transplant-ineligible patients (2B).
Objectives
Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort.
Methods
Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE.
Results
Concentric VWE of the proximal intradural ICA was found in 13 (30%) patients, and of the proximal intradural VA in 39 (91%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 %), morphology indicated atherosclerotic lesions in addition to vasa vasorum.
Conclusions
Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis.
Norrin is a secreted signaling molecule activating the Wnt/β-catenin pathway. Since Norrin protects retinal neurons from experimental acute injury, we were interested to learn if Norrin attenuates chronic damage of retinal ganglion cells (RGC) and their axons in a mouse model of glaucoma. Transgenic mice overexpressing Norrin in the retina (Pax6-Norrin) were generated and crossed with DBA/2J mice with hereditary glaucoma and optic nerve axonal degeneration. One-year old DBA/2J/Pax6-Norrin animals had significantly more surviving optic nerve axons than their DBA/2J littermates. The protective effect correlated with an increase in insulin-like growth factor (IGF)-1 mRNA and an enhanced Akt phosphorylation in DBA/2J/Pax6-Norrin mice. Both mouse strains developed an increase in intraocular pressure during the second half of the first year and marked degenerative changes in chamber angle, ciliary body and iris structure. The degenerations were slightly attenuated in the chamber angle of DBA/2J/Pax6-Norrin mice, which showed a β-catenin increase in the trabecular meshwork. We conclude that high levels of Norrin and the subsequent constitutive activation of Wnt/β-catenin signaling in RGC protect from glaucomatous axonal damage via IGF-1 causing increased activity of PI3K-Akt signaling. Our results identify components of a protective signaling network preventing degeneration of optic nerve axons in glaucoma.
Tuberculosis (TB) is one of the leading causes of death by an infectious disease. It remains a major health burden worldwide, in part due to misdiagnosis. Therefore, improved diagnostic tests allowing the faster and more reliable diagnosis of patients with active TB are urgently needed. This prospective study examined the performance of the new molecular whole-blood test T-Track\(^®\) TB, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels, and compared it to that of the QuantiFERON\(^®\)-TB Gold Plus (QFT-Plus) enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and agreement analyses were conducted on the whole blood of 181 active TB patients and 163 non-TB controls. T-Track\(^®\) TB presented sensitivity of 94.9% and specificity of 93.8% for the detection of active TB vs. non-TB controls. In comparison, the QFT-Plus ELISA showed sensitivity of 84.3%. The sensitivity of T-Track\(^®\) TB was significantly higher (p < 0.001) than that of QFT-Plus. The overall agreement of T-Track\(^®\) TB with QFT-Plus to diagnose active TB was 87.9%. Out of 21 samples with discordant results, 19 were correctly classified by T-Track\(^®\) TB while misclassified by QFT-Plus (T-Track\(^®\) TB-positive/QFT-Plus-negative), and two samples were misclassified by T-Track\(^®\) TB while correctly classified by QFT-Plus (T-Track\(^®\) TB-negative/QFT-Plus-positive). Our results demonstrate the excellent performance of the T-Track\(^®\) TB molecular assay and its suitability to accurately detect TB infection and discriminate active TB patients from non-infected controls.