Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Journal article (5)
- Doctoral Thesis (1)
Keywords
Institute
Background
Elbow imaging is challenging with conventional multidetector computed tomography (MDCT), while cone-beam CT (CBCT) provides superior options. We compared intra-individually CBCT versus MDCT image quality in cadaveric elbows.
Methods
A twin robotic x-ray system with new CBCT mode and a high-resolution clinical MDCT were compared in 16 cadaveric elbows. Both systems were operated with a dedicated low-dose (LD) protocol (equivalent volume CT dose index [CTDI\(_{vol(16 cm)}\)] = 3.3 mGy) and a regular clinical scan dose (RD) protocol (CTDI\(_{vol(16 cm)}\) = 13.8 mGy). Image quality was evaluated by two radiologists (R1 and R2) on a seven-point Likert scale, and estimation of signal intensity in cancellous bone was conducted. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) statistics were used.
Results
The CBCT prototype provided superior subjective image quality compared to MDCT scans (for RD, p ≤ 0.004; for LD, p ≤ 0.001). Image quality was rated very good or excellent in 100% of the cases by both readers for RD CBCT, 100% (R1) and 93.8% (R2) for LD CBCT, 62.6% and 43.8% for RD MDCT, and 0.0% and 0.0% for LD MDCT. Single-measure ICC was 0.95 (95% confidence interval 0.91–0.97; p < 0.001). Software-based assessment supported subjective findings with less “undecided” pixels in CBCT than dose-equivalent MDCT (p < 0.001). No significant difference was found between LD CBCT and RD MDCT.
Conclusions
In cadaveric elbow studies, the tested cone-beam CT prototype delivered superior image quality compared to high-end multidetector CT and showed a potential for considerable dose reduction.
Cone-beam computed tomography is a powerful tool for 3D imaging of the appendicular skeleton, facilitating detailed visualization of bone microarchitecture. This study evaluated various combinations of acquisition and reconstruction parameters for the cone-beam CT mode of a twin robotic x-ray system in cadaveric wrist and elbow scans, aiming to define the best possible trade-off between image quality and radiation dose. Images were acquired with different combinations of tube voltage and tube current–time product, resulting in five scan protocols with varying volume CT dose indices: full-dose (FD; 17.4 mGy), low-dose (LD; 4.5 mGy), ultra-low-dose (ULD; 1.15 mGy), modulated low-dose (mLD; 0.6 mGy) and modulated ultra-low-dose (mULD; 0.29 mGy). Each set of projection data was reconstructed with three convolution kernels (very sharp [Ur77], sharp [Br69], intermediate [Br62]). Five radiologists subjectively assessed the image quality of cortical bone, cancellous bone and soft tissue using seven-point scales. Irrespective of the reconstruction kernel, overall image quality of every FD, LD and ULD scan was deemed suitable for diagnostic use in contrast to mLD (very sharp/sharp/intermediate: 60/55/70%) and mULD (0/3/5%). Superior depiction of cortical and cancellous bone was achieved in FD\(_{Ur77}\) and LD\(_{Ur77}\) examinations (p < 0.001) with LD\(_{Ur77}\) scans also providing favorable bone visualization compared to FD\(_{Br69}\) and FD\(_{Br62}\) (p < 0.001). Fleiss’ kappa was 0.618 (0.594–0.641; p < 0.001), indicating substantial interrater reliability. In this study, we demonstrate that considerable dose reduction can be realized while maintaining diagnostic image quality in upper extremity joint scans with the cone-beam CT mode of a twin robotic x-ray system. Application of sharper convolution kernels for image reconstruction facilitates superior display of bone microarchitecture.
Die vorliegende Arbeit soll dazu dienen, die Strahlentherapie bei Patienten mit histologisch gesichertem, nicht-kleinzelligen Bronchialkarzinom nach 3D-konformalem sowie intensitätsmoduliertem Schema anhand definierter Outcome-Parameter und ihrer Nebenwirkungsraten zu vergleichen. Insgesamt wurde für diese monozentrisch durchgeführte Studie mit retrospektivem Design ein Kollektiv aus 111 Patienten/-innen untersucht.
Anhand des untersuchtem Kollektivs konnte gezeigt werden, dass beide Therapieverfahren bezüglich der Überlebensraten und der Rezidiv- bzw. Metastasierungshäufigkeit im Rahmen des beobachteten Studienzeitraums miteinander vergleichbar sind. Auch für die Häufigkeit akuter Therapie-assoziierter Nebenwirkungen konnte kein signifikanter Unterschied zwischen den beiden Bestrahlungstechniken nachgewiesen werden; dagegen trat eine chronische Strahlenpneumonitis häufiger in der Patientengruppe auf, die primär eine 3D-CRT erhalten hatte.
Objectives
Triangular fibrocartilage complex (TFCC) injuries frequently cause ulnar-sided wrist pain and can induce distal radioulnar joint instability. With its complex three-dimensional structure, diagnosis of TFCC lesions remains a challenging task even in MR arthrograms. The aim of this study was to assess the added diagnostic value of radial reformatting of isotropic 3D MRI datasets compared to standard planes after direct arthrography of the wrist.
Methods
Ninety-three patients underwent wrist MRI after fluoroscopy-guided multi-compartment arthrography. Two radiologists collectively analyzed two datasets of each MR arthrogram for TFCC injuries, with one set containing standard reconstructions of a 3D thin-slice sequence in axial, coronal and sagittal orientation, while the other set comprised an additional radial plane view with the rotating center positioned at the ulnar styloid. Surgical reports (whenever available) or radiological reports combined with clinical follow-up served as a standard of reference. In addition, diagnostic confidence and assessability of the central disc and ulnar-sided insertions were subjectively evaluated.
Results
Injuries of the articular disc, styloid and foveal ulnar attachment were present in 20 (23.7%), 10 (10.8%) and 9 (9.7%) patients. Additional radial planes increased diagnostic accuracy for lesions of the styloid (0.83 vs. 0.90; p = 0.016) and foveal (0.86 vs. 0.94; p = 0.039) insertion, whereas no improvement was identified for alterations of the central cartilage disc. Readers' confidence (p < 0.001) and assessability of the ulnar-sided insertions (p < 0.001) were superior with ancillary radial reformatting.
Conclusions
Access to the radial plane view of isotropic 3D sequences in MR arthrography improves diagnostic accuracy and confidence for ulnar-sided TFCC lesions.
Background
In wrist arthrograms, aberrant contrast material is frequently seen extending into the soft tissue adjacent to the ulnar styloid process. Since the prestyloid recess can mimic contrast leakage in CT arthrography, this study aims to provide a detailed analysis of its morphologic variability, while investigating whether actual ulnar-sided leakage is associated with injuries of the triangular fibrocartilage complex (TFCC).
Methods
Eighty-six patients with positive wrist trauma history underwent multi-compartment CT arthrography (40 women, median age 44.5 years). Studies were reviewed by two board-certified radiologists, who documented the morphology of the prestyloid recess regarding size, opening type, shape and position, as well as the presence or absence of ulnar-sided contrast leakage. Correlations between leakage and the presence of TFCC injuries were assessed using the mean square contingency coefficient (r\(_{ɸ}\)).
Results
The most common configuration of the prestyloid recess included a narrow opening (73.26%; width 2.26 ± 1.43 mm), saccular shape (66.28%), and palmar position compared to the styloid process (55.81%). Its mean length and anterior–posterior diameter were 6.89 ± 2.36 and 5.05 ± 1.97 mm, respectively. Ulnar-sided contrast leakage was reported in 29 patients (33.72%) with a mean extent of 12.30 ± 5.31 mm. Leakage occurred more often in patients with ulnar-sided TFCC injuries (r\(_{ɸ}\) = 0.480; p < 0.001), whereas no association was found for lesions of the central articular disc (r\(_{ɸ}\) = 0.172; p = 0.111).
Conclusions
Since ulnar-sided contrast leakage is more common in patients with peripheral TFCC injuries, distinction between an atypical configuration of the prestyloid recess and actual leakage is important in CT arthrography of the wrist.
Background
Demographic change entails an increasing incidence of fragility fractures. Dual-energy CT (DECT) with virtual non-calcium (VNCa) reconstructions has been introduced as a promising diagnostic method for evaluating bone microarchitecture and marrow simultaneously. This study aims to define the most accurate cut-off value in Hounsfield units (HU) for discriminating the presence and absence of bone marrow edema (BME) in sacral fragility fractures.
Methods
Forty-six patients (40 women, 6 men; 79.7 ± 9.2 years) with suspected fragility fractures of the sacrum underwent both DECT (90 kVp / 150 kVp with tin prefiltration) and MRI. Nine regions-of-interest were placed in each sacrum on DECT-VNCa images. The resulting 414 HU measurements were stratified into “edema” (n = 80) and “no edema” groups (n = 334) based on reference BME detection in T2-weighted MRI sequences. Area under the receiver operating characteristic curve was calculated to determine the desired cut-off value and an associated conspicuity range for edema detection.
Results
The mean density within the “edema” group of measurements (+ 3.1 ± 8.3 HU) was substantially higher compared to the “no edema” group (-51.7 ± 21.8 HU; p < 0.010). Analysis in DECT-VNCa images suggested a cut-off value of -12.9 HU that enabled sensitivity and specificity of 100% for BME detection compared to MRI. A range of HU values between -14.0 and + 20.0 is considered indicative of BME in the sacrum.
Conclusions
Quantitative analysis of DECT-VNCa with a cut-off of -12.9 HU allows for excellent diagnostic accuracy in the assessment of sacral fragility fractures with associated BME. A diagnostic “one-stop-shop” approach without additional MRI is feasible.