Refine
Has Fulltext
- yes (5)
Is part of the Bibliography
- yes (5)
Document Type
- Journal article (5)
Language
- English (5)
Keywords
- ADHD (1)
- Cystic fibrosis (1)
- EU-RHAB registry (1)
- Functional magnetic resonance imaging (1)
- Hypertonic (1)
- Magnetic resonance imaging (1)
- Oxygen (1)
- PARK2 (1)
- Physics (1)
- Pulmonary function (1)
Institute
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (1)
- Kinderklinik und Poliklinik (1)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (1)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Physikalisches Institut (1)
- Rudolf-Virchow-Zentrum (1)
The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics.
Purpose
To test quantitative functional lung MRI techniques in young adults with cystic fibrosis (CF) compared to healthy volunteers and to monitor immediate treatment effects of a single inhalation of hypertonic saline in comparison to clinical routine pulmonary function tests.
Materials and methods
Sixteen clinically stable CF patients and 12 healthy volunteers prospectively underwent two functional lung MRI scans and pulmonary function tests before and 2h after a single treatment of inhaled hypertonic saline or without any treatment. MRI-derived oxygen enhanced T1 relaxation measurements, fractional ventilation, first-pass perfusion parameters and a morpho-functional CF-MRI score were acquired.
Results
Compared to healthy controls functional lung MRI detected and quantified significantly increased ventilation heterogeneity in CF patients. Regional functional lung MRI measures of ventilation and perfusion as well as the CF-MRI score and pulmonary function tests could not detect a significant treatment effect two hours after a single treatment with hypertonic saline in young adults with CF (p>0.05).
Conclusion
This study shows the feasibility of functional lung MRI as a non-invasive, radiation-free tool for monitoring patients with CF.
Protein Kinase D2 drives chylomicron‐mediated lipid transport in the intestine and promotes obesity
(2021)
Lipids are the most energy‐dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron‐mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high‐fat diet‐induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.
Recurrent medulloblastomas are associated with survival rates <10%. Adequate multimodal therapy is being discussed as having a major impact on survival. In this study, 93 patients with recurrent medulloblastoma treated in the German P-HIT-REZ 2005 Study were analyzed for survival (PFS, OS) dependent on patient, disease, and treatment characteristics. The median age at the first recurrence was 10.1 years (IQR: 6.9–16.1). Median PFS and OS, at first recurrence, were 7.9 months (CI: 5.7–10.0) and 18.5 months (CI: 13.6–23.5), respectively. Early relapses/progressions (<18 months, n = 30/93) found mainly in molecular subgroup 3 were associated with markedly worse median PFS (HR: 2.34) and OS (HR: 3.26) in regression analyses. A significant survival advantage was found for the use of volume-reducing surgery as well as radiotherapy. Intravenous chemotherapy with carboplatin and etoposide (ivCHT, n = 28/93) showed improved PFS and OS data and the best objective response rate (ORR) was 66.7% compared to oral temozolomide (oCHT, n = 47/93) which was 34.8%. Intraventricular (n = 43) as well as high-dose chemotherapy (n = 17) at first relapse was not related to a significant survival benefit. Although the results are limited due to a non-randomized study design, they may serve as a basis for future treatment decisions in order to improve the patients' survival.
Introduction: Malignant rhabdoid tumors (MRT) predominantly affect infants and young children. Patients below six months of age represent a particularly therapeutically challenging group. Toxicity to developing organ sites limits intensity of treatment. Information on prognostic factors, genetics, toxicity of treatment and long-term outcomes is sparse. Methods: Clinical, genetic, and treatment data of 100 patients (aged below 6 months at diagnosis) from 13 European countries were analyzed (2005–2020). Tumors and matching blood samples were examined for SMARCB1 mutations using FISH, MLPA and Sanger sequencing. DNA methylation subgroups (ATRT-TYR, ATRT-SHH, and ATRT-MYC) were determined using 450 k / 850 k-profiling. Results: A total of 45 patients presented with ATRT, 29 with extracranial, extrarenal (eMRT) and 9 with renal rhabdoid tumors (RTK). Seventeen patients demonstrated synchronous tumors (SYN). Metastases (M+) were present in 27% (26/97) at diagnosis. A germline mutation (GLM) was detected in 55% (47/86). DNA methylation subgrouping was available in 50% (31 / 62) with ATRT or SYN; for eMRT, methylation-based subgrouping was not performed. The 5-year overall (OS) and event free survival (EFS) rates were 23.5 ± 4.6% and 19 ± 4.1%, respectively. Male sex (11 ± 5% vs. 35.8 ± 7.4%), M+ stage (6.1 ± 5.4% vs. 36.2 ± 7.4%), presence of SYN (7.1 ± 6.9% vs. 26.6 ± 5.3%) and GLM (7.7 ± 4.2% vs. 45.7 ± 8.6%) were significant prognostic factors for 5-year OS. Molecular subgrouping and survival analyses confirm a previously described survival advantage for ATRT-TYR. In an adjusted multivariate model, clinical factors that favorably influence the prognosis were female sex, localized stage, absence of a GLM and maintenance therapy. Conclusions: In this cohort of homogenously treated infants with MRT, significant predictors of outcome were sex, M-stage, GLM and maintenance therapy. We confirm the need to stratify which patient groups benefit from multimodal treatment, and which need novel therapeutic strategies. Biomarker-driven tailored trials may be a key option.