Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (2)
Language
- English (2)
Keywords
- 4-dimethylamino-4′-cyanodiphenylacetylene (1)
- TD-DFT (1)
- blend (1)
- charge transfer (1)
- co-gels (1)
- fluorescence (1)
- orthogonal self-assembly (1)
- supramolecular chemistry (1)
- transient absorption (1)
- ultrafast Raman loss spectroscopy (1)
Institute
Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1- and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution.
Photo‐initiated intramolecular charge transfer (ICT) processes play a pivotal role in the excited state reaction dynamics in donor‐bridge‐acceptor systems. The efficacy of such a process can be improved by modifying the extent of π‐conjugation, relative orientation/twists of the donor/acceptor entities and polarity of the environment. Herein, 4‐dimethylamino‐4′‐cyanodiphenylacetylene (DACN‐DPA), a typical donor‐π‐bridge‐acceptor system, was chosen to unravel the role of various internal coordinates that govern the extent of photo‐initiated ICT dynamics. Transient absorption (TA) spectra of DACN‐DPA in n‐hexane exhibit a lifetime of >2 ns indicating the formation of a triplet state while, in acetonitrile, a short time‐constant of ∼2 ps indicates the formation of charge transferred species. Ultrafast Raman loss spectroscopy (URLS) measurements show distinct temporal and spectral dynamics of Raman bands associated with C≡C and C=C stretching vibrations. The appearance of a new band at ∼1492 cm\(^{−1}\) in acetonitrile clearly indicates structural modification during the ultrafast ICT process. Furthermore, these observations are supported by TD‐DFT computations.