Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Year of publication
- 2016 (2)
Document Type
- Journal article (1)
- Doctoral Thesis (1)
Language
- English (2)
Keywords
- Kutikula (1)
- Kutikularwachs (1)
- Permeabilität (1)
- Temperaturabhängigkeit (1)
- Transpiration <Pflanzen> (1)
- Transportbarriere (1)
- Wüstenpflanze (1)
- aliphatic compounds (1)
- conductance (1)
- cuticular leaf wax (1)
Cuticles cover all above-ground primary plant organs and are lipoid in nature consisting of a cutin matrix with cuticular waxes embedded within or deposited on its surface. The foremost function of the plant cuticle is the limitation of transpirational water loss into the surrounding atmosphere. Transpiration of water vapour from plants differs between stomatal and cuticular transpiration. Stomatal closure minimises the stomatal water loss and the remaining, much lower water transpiration occurs through the plant cuticle.
Temperature influence on the transpiration barrier properties of intact leaves is not yet known, despite the importance of the cuticular transpiration especially under drought and heat conditions. The present study focuses on the temperature-dependent minimum water permeability of whole leaves, in comparison to the temperature effect on the cuticular permeance of isolated, astomatous cuticles (Chapter I - III).
The minimum water permeability was determined gravimetrically from leaf drying curves and represents the cuticular water permeability of intact, stomatous leaves under conditions of complete stomatal closure. The temperature effect on the transpiration barrier of the desert plant Rhazya stricta and the Mediterranean sclerophyll Nerium oleander exposed a continuous increase of minimum water permeabilities with an increase in temperature. In contrast to other published studies, no abrupt and steep increase of the water permeability at high temperatures was detected. This steep increase indicates structural changes of the barrier properties of isolated cuticular membranes with a drastic decrease of efficiency. A stabilising impact of the cell wall on the plant cuticle of intact leaves was proposed. This steadying effect was confirmed with different experimental approaches measuring the cuticular water permeability of Prunus laurocerasus intact leaves.
Physiological analysis of water transport on isolated, astomatous leaf cuticles indicated a drastic decline of the barrier properties at elevated temperatures for Prunus laurocerasus but not for Nerium oleander. Cuticular components were quantitatively and qualitatively analysed by gas chromatography with a flame ionisation detector and a mass spectrometric detector, respectively. A high accumulation of pentacyclic triterpenoids as cuticular wax components in relation to the cutin monomer coverage was detected for Nerium oleander and for Rhazya stricta leaves, too. Accordingly, reinforcing of the cutin matrix by triterpenoids was proposed to improve the mechanical strength and to reduce the extensibility of plant cuticles. Thus, structural changes of the cuticular barrier properties were potentially suppressed at elevated temperatures.
The function of the cuticular wax amount and/or wax composition and its relation with the cuticular water permeability remains to be elucidated. In the second part of this work the cuticular wax quantity and quality as well as its impact on the transpiration barrier properties was analysed in order to deduce a potential relation between chemistry and function of plant cuticles (Chapter IV - V).
Chemical analyses of the cuticular wax components of a wide range of plant species, including one tropical (Vanilla planifolia), temperate (Juglans regia, Plantago lanceolata), Mediterranean (Nerium oleander, Olea europaea) and one desert (Rhazya stricta) plant species, were conducted. The cuticular wax compositions of nine characteristic plant species from xeric limestone sites naturally located in Franconia (Southern Germany) were determined for the first time. The corresponding minimum or cuticular water permeabilities of both stomatous and astomatous leaf surfaces were measured to detect a potential relationship between the cuticular wax amount, wax composition and the cuticular barrier properties.
It was demonstrated that abundant cuticular wax amounts did not constitute more efficient transpiration barriers. However, 55% of the cuticular barrier function can be attributed to the very-long-chain aliphatic wax coverages. These new findings provide evidence that the acyclic wax constituents play a pivotal role establishing efficient transpiration barriers. Additionally, these findings strengthen the hypothesis that cyclic components, such as pentacyclic triterpenoids, do not hinder the water diffusion through plant cuticles as effectively as acyclic constituents. For the first time a relationship between the cuticular wax composition and the transpiration barrier properties of a wide range of plant species proved insights into the potential relation between chemistry and function of plant cuticles.
Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10\(^{-5}\) m s\(^{-1}\) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm\(^{-2}\)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures.