Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (1)
- Doctoral Thesis (1)
Language
- English (2)
Keywords
- Angststörung (1)
- Anxiety Disorders (1)
- Fear (1)
- Fear Conditioning (1)
- Fear Extinction (1)
- Konditionierung (1)
- Prefrontalt Cortex (1)
- Präfrontaler Cortex (1)
- Transcranial Magnetic Stimulation (1)
- fear conditioning (1)
Pavlovian fear conditioning describes a form of associative learning in which a previously neutral stimulus elicits a conditioned fear response after it has been temporally paired with an aversive consequence. Once acquired, the fear response can be extinguished by repeatedly presenting the former neutral stimulus in the absence of the aversive consequence. Although most patients suffering from anxiety disorders cannot recall a specific conditioned association between a formerly neutral stimulus and the feeling of anxiety, the produced behavioral symptoms, such as avoidance or safety behavior to prevent the anticipated aversive consequence are commonly exhibited in all anxiety disorders. Moreover, there is considerable similarity between the neural structures involved in fear and extinction in the rodent and in the human. Translational research thus contributes to the understanding of neural circuitries involved in the development and maintenance of anxiety disorders, and further provides hypotheses for improvements in treatment strategies aiming at inhibiting the fear response.
Since the failure to appropriately inhibit or extinguish a fear response is a key feature of pathological anxiety, the present preclinical research focuses on the interplay between the amygdala and the medial prefrontal cortex (mPFC) during fear learning with particular regard to the prefrontal recruitment during fear extinction and its recall. By firstly demonstrating an increased mPFC activity over the time course of extinction learning with functional near-infrared spectroscopy, the main study of this dissertation focused on repetitive transcranial magnetic stimulation (rTMS) as brain stimulation technique suitable to enhance extinction learning. Since hypofrontality is assumed to underlie the maintenance of pathological anxiety, rTMS application revealed an increased mPFC activity, which resulted in a decreased fear response on the behavioral level both during extinction learning as well as during the recall of extinction 24 hours later and in the absence of another stimulation. The following attempt to improve the generalization of extinction with rTMS from an extinguished stimulus to a second stimulus which was reinforced but not extinguished was at least partially evidenced. By revealing an increased prefrontal activity to the non-extinguished stimulus, the active and the placebo rTMS condition, however, did not differ on behavioral parameters. These preclinical findings were discussed in the light of genetic and environmental risk factors with special regard to the combination of a risk variant of the neuropeptide S receptor 1 gene polymorphism (NPSR1 rs324981) and anxiety sensitivity. While the protective homozygous AA genotype group showed no correlation with anxiety sensitivity, the NPSR1 T genotype group exhibited an inverse correlation with anxiety sensitivity in the presence of emotionally negative stimuli. In light of other findings assuming a role of the NPSR1 T allele in panic disorder, the revealed hypofrontality was discussed to define a risk group of patients who might particularly benefit from an augmentation of exposure therapy with rTMS.
Taken together, the presented studies support the central role of the prefrontal cortex in fear extinction and suggest the usefulness of rTMS as an augmentation strategy to exposure therapy in order to decrease therapy relapse rates. The combination of rTMS and extinction has been herein evidenced to modulate fear processes in a preclinical approach thereby establishing important implications for the design of future clinical studies.
The extinction of conditioned fear depends on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC). In rats, high-frequency electrical mPFC stimulation has been shown to improve extinction by means of a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects. Healthy volunteers received one session of either active or sham repetitive transcranial magnetic stimulation (rTMS) covering the mPFC while undergoing a 2-day fear conditioning and extinction paradigm. Repetitive TMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS−) was associated with an aversive scream (UCS). Immediate extinction learning (day 1) and extinction recall (day 2) were conducted without UCS delivery. Conditioned responses (CR) were assessed in a multimodal approach using fear-potentiated startle (FPS), skin conductance responses (SCR), functional near-infrared spectroscopy (fNIRS), and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS− discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS and can thus be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy (CBT).