Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Journal article (6)
- Doctoral Thesis (1)
Keywords
- Alzheimer′s disease (1)
- Biomedical engineering (1)
- Blut-Hirn-Schranke (1)
- CNS disease (1)
- Endothelzelle (1)
- Eriodictyon californicum (1)
- In vitro (1)
- LCST (1)
- Neisseria meningitidis (1)
- Neurale Stammzellen (1)
Institute
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (6)
- Frauenklinik und Poliklinik (1)
- Institut für Anatomie und Zellbiologie (1)
- Institut für Hygiene und Mikrobiologie (1)
- Institut für Molekulare Infektionsbiologie (1)
- Institut für Organische Chemie (1)
- Institut für Pharmazie und Lebensmittelchemie (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)
Sonstige beteiligte Institutionen
Die Blut-Hirn-Schranke (BHS) stellt eine der dichtesten und wichtigsten Barrieren zwischen Blutzirkulation und Zentralnervensystem (ZNS) dar. Sie besteht aus spezialisierten Endothelzellen, welche die zerebralen Kapillaren auskleiden und durch sehr dichte Tight Junctions (TJs) miteinander verbunden sind. Weitere Komponenten der dynamischen Blut-Hirn-Schrankenbarriere stellen Perizyten, Astrozyten, Neurone und Mikrogliazellen dar, welche zusammen mit der extrazellulären Matrix der Basalmembran der Gehirnkapillaren und den zuvor genannten Endothelzellen ein komplexes regulatorisches System, die so genannte neurovaskuläre Einheit bilden (Hawkins und Davis 2005).
Die Hauptfunktionen der BHS lassen sich in drei Untergruppen untergliedern, die physikalische, metabolische und Transport-Barriere (Neuhaus und Noe 2010). Hauptsächlich dient die BHS der Aufrechterhaltung der Homöostase des ZNS und dem Schutz vor neurotoxischen Substanzen sowie Pathogenen, wie Bakterien und Viren. Zudem ist sie auch für die Versorgung der Neuronen mit Nährstoffen und regulierenden Substanzen sowie den Efflux von Stoffwechselendprodukten des ZNS zurück ins Blut verantwortlich. Für die Entwicklung von Medikamenten zur Behandlung von neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Parkinson und Multiple Sklerose oder Gehirntumoren, stellt die Dichtigkeit der BHS gegenüber Substanzen und die hohe metabolische Aktivität der Endothelzellen aber ein großes Problem dar. Viele Medikamente sind nicht in der Lage in ausreichender Konzentration die BHS zu überwinden, um an ihren Wirkort zu gelangen oder werden vor dem Transport metabolisiert und die Wirksamkeit dadurch eingeschränkt. Weiterhin spielen auch Defekte der BHS eine entscheidende Rolle in der Beeinflussung der Pathogenese vieler ZNS-Erkrankungen.
Aufgrund des hohen Bedarfs an geeigneten Testsystemen in der Grundlagen- sowie präklinischen Forschung für Medikamentenentwicklung und Infektionsstudien wurden eine Vielzahl unterschiedlicher BHS-Modelle entwickelt. Neben in silico-, azellulären in vitro- und in vivo-Modellen sind auch zahlreiche zellbasierte Modelle der BHS entwickelt worden. Standardisierte Modelle auf Basis immortalisierter
Zelllinien jedoch weisen nur eine inhomogene TJ-Expression auf und verfügen meist
über eine geringe Barriereintegrität, erfasst über transendotheliale elektrische Widerstände (TEER)
unter 150
· cm2 (Deli et al. 2005). Im Vergleich dazu wurden in Tierexperimenten TEER-Werte
von mehr als 1500
· cm2 an der BHS gemessen (Butt et al. 1990; Crone und Olesen 1982). Die
Verfügbarkeit humaner primärer BHS-Zellen ist sehr limitiert und ihr Einsatz nicht nur im Hinblick
auf ethische Aspekte bedenklich. Humane Gehirnzellen können z. B. aus Biopsie- oder Autopsiematerial
von Patienten mit Epilepsie oder Gehirntumoren isoliert werden. Allerdings besteht hier
das Risiko, dass die isolierten Zellen krankheitsbedingt verändert sind, was die Eigenschaften der
BHS-Modelle erheblich beeinflussen kann.
Eine Alternative, die diese Probleme umgeht, ist die Verwendung von humanen induziert pluripotenten
Stammzellen (hiPSCs), um standardisierte humane BHS-Modelle unter reproduzierbaren
Bedingungen bereitzustellen.
Im Rahmen dieser Arbeit ist es gelungen, hiPSCs in vitro nach etablierten und standardisierten Methoden
in Endothelzellen der BHS, neurale Stammzellen (hiPS-NSCs) sowie Astrozyten (hiPS-A)
zu differenzieren (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013;Reinhardt et al. 2013) und zum Aufbau der Modelle einzusetzen. Die Endothelzellen wurden mit
Hilfe protein- und genbasierter Nachweismethoden auf das Vorhandensein von endothelzellspezifischen
TJ-Markern sowie spezifischen Transportern untersucht und funktionell charakterisiert. Die
Kryokonservierung der hiPS-EC-Progenitoren, die im Rahmen der vorliegenden Arbeit entwickelt
wurde, ermöglicht eine größere räumliche und zeitliche Flexibilität beim Arbeiten mit den stammzellbasierten
Modellen sowie das Anlegen standardisierter Zellbanken. Weiterhin wurden multipotente
NSCs aus fetalen Gehirnbiopsien isoliert (fNSCs) und als Kontrollkulturen zu den hiPS-NSCs
für den Aufbau von BHS-Modellen eingesetzt.
Mit dem Ziel die in vivo-BHS bestmöglich zu imitieren und die Modelleigenschaften zu optimieren,
wurde ein Set aus zehn unterschiedlichen BHS-Modellen basierend auf primären Zellen, hiPSCs
und fNSCs analysiert. Der Aufbau der BHS-Modelle erfolgte unter Verwendung von Transwellsystemen.
Durch die systematische Untersuchung des Einflusses der unterschiedlichen Zelltypen der
neurovaskulären Einheit auf die Barriereintegrität und Genexpression des BHS-Endothels, konnten
die Quadrupel-Kulturen mit Perizyten, Astrozyten und hiPS-NSCs als die Kultur mit den physiologischsten
Eigenschaften identifiziert werden. Auf Grund der signifikant erhöhten TEER-Werte
von bis zu 2500
· cm2 und einer um mindestens 1,5-fachen Steigerung der Genexpression BHSrelevanter
Transporter und TJ-Moleküle gegenüber den Monokulturen, wurden diese Modelle für
weiterführende Studien ausgewählt.
Das Vorhandensein eines komplexen, in vivo-ähnlichen TJ-Netzwerkes, bestehend aus Occludin,
Claudin 1, 3, 4 und 5, konnte mittels quantitativer Realtime-PCR, Western Blot sowie ultrastruktureller
Analyse in der Gefrierbruch- und Raster-Elektronenmikroskopie nachgewiesen werden.
Neben der Begrenzung der parazellulären Permeabilität, welche über die geringe Permeation von
FITC-Dextran (4 kDa und 40 kDa), Fluoreszein und Lucifer Yellow nachgewiesen wurde, stellt die
BHS ebenfalls eine Barriere für den transzellulären Transport von Substanzen dar. Eine Beurteilung
der Modelle hinsichtlich der Qualifikation für die Nutzung im Wirkstoffscreening wurde mit
Hilfe von Transportversuchen unter dem Einsatz von BHS-relevanten Referenzsubstanzen durchgeführt.
Die Klassifikation der Testsubstanzen erfolgte analog ihrer Permeationsgeschwindigkeiten:
Diazepam und Koffein gelten als schnell transportierte Wirkstoffe, Ibuprofen, Celecoxib und Diclofenac
werden mit einer mittleren Geschwindigkeit über die BHS transportiert und Loratadin sowie
Rhodamin 123 sind langsam permeierende Substanzen. Innerhalb der Versuche mit den Quadrupelkulturen
wurde diese Reihenfolge bestätigt, lediglich für Koffein wurde ein signifikant niedrigerer
Permeationskoeffizient verglichen mit der Monokultur erzielt.
Der Einsatz der hiPSC-Technologie ermöglicht es zudem, aus einer Stammzelllinie große Mengen
an humanen somatischen Zelltypen zu generieren und für gezielte Anwendungen bereitzustellen.
Es konnte im Rahmen dieser Arbeit gezeigt werden, dass mit Hilfe eines eigens für diese Zwecke
konstruierten Rührreaktorsystems eine reproduzierbare Expansion der hiPSCs unter definierten Bedingungen
ermöglicht wurde. Basierend auf dieser Grundlage ist nun ein Hochdurchsatz-Screening
von Medikamenten denkbar.
Die in dieser Arbeit präsentierten Daten belegen die Etablierung eines stammzellbasierten in vitro-
Quadrupelmodels der humanen BHS, welches über in vivo-ähnliche Eigenschaften verfügt. Die
Anforderungen, die an humane BHS-Modelle gestellt werden, wie die Reproduzierbarkeit der Ergebnisse,
eine angemessene Charakterisierung, welche die Untersuchung der Permeabilität von Referenzsubstanzen
einschließt, die Analyse der Expression von BHS-relevanten Transportermolekülen sowie die solide und physiologische Morphologie der Zellen, wurden erfüllt.
Das etablierte BHS-Modell kann in der Pharmaindustrie für die Entwicklung von Medikamenten
eingesetzt werden. Ausreichend qualifizierte Modelle können hier in der präklinischen Forschung
genutzt werden, um Toxizitäts- und Transportstudien an neu entwickelten Substanzen durchzuführen
und eine bessere in vitro-in vivo-Korrelation der Ergebnisse zu ermöglichen oder Mechanismen
zu entwickeln, um die BHS-Barriere gezielt zu überwinden.
The mono-6-deoxy-6-azides of 2,6-di-O-methyl-beta-cyclodextrin (DIMEB) and randomly methylated-beta-cyclodextrin (RAMEB) were conjugated to propargylated hydroxyethyl starch (HES) by Cu+-catalysed [2 + 3] cycloaddition. The resulting water soluble polymers showed lower critical solution temperatures (LCST) at 52.5 degrees C (DIMEB-HES) and 84.5 degrees C (RAMEB-HES), respectively. LCST phase separations could be completely avoided by the introduction of a small amount of carboxylate groups at the HES backbone. The methylated CDs conjugated to the HES backbone exhibited significantly lower cytotoxicities than the corresponding monomeric CD derivatives. Since the binding potentials of these CD conjugates were very high, they are promising candidates for new oral dosage forms of anaesthetic actives.
Automated real-time monitoring of human pluripotent stem cell aggregation in stirred tank reactors
(2019)
The culture of human induced pluripotent stem cells (hiPSCs) at large scale becomes feasible with the aid of scalable suspension setups in continuously stirred tank reactors (CSTRs). Innovative monitoring options and emerging automated process control strategies allow for the necessary highly defined culture conditions. Next to standard process characteristics such as oxygen consumption, pH, and metabolite turnover, a reproducible and steady formation of hiPSC aggregates is vital for process scalability. In this regard, we developed a hiPSC-specific suspension culture unit consisting of a fully monitored CSTR system integrated into a custom-designed and fully automated incubator. As a step towards cost-effective hiPSC suspension culture and to pave the way for flexibility at a large scale, we constructed and utilized tailored miniature CSTRs that are largely made from three-dimensional (3D) printed polylactic acid (PLA) filament, which is a low-cost material used in fused deposition modelling. Further, the monitoring tool for hiPSC suspension cultures utilizes in situ microscopic imaging to visualize hiPSC aggregation in real-time to a statistically significant degree while omitting the need for time-intensive sampling. Suitability of our culture unit, especially concerning the developed hiPSC-specific CSTR system, was proven by demonstrating pluripotency of CSTR-cultured hiPSCs at RNA (including PluriTest) and protein level.
Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.
In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm\(^{2}\) and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies.
Alzheimer′s disease (AD) is a neurological disorder with still no preventive or curative treatment. Flavonoids are phytochemicals with potential therapeutic value. Previous studies described the flavanone sterubin isolated from the Californian plant Eriodictyon californicum as a potent neuroprotectant in several in vitro assays. Herein, the resolution of synthetic racemic sterubin (1) into its two enantiomers, (R)‐1 and (S)‐1, is described, which has been performed on a chiral chromatographic phase, and their stereochemical assignment online by HPLC‐ECD coupling. (R)‐1 and (S)‐1 showed comparable neuroprotection in vitro with no significant differences. While the pure stereoisomers were configurationally stable in methanol, fast racemization was observed in the presence of culture medium. We also established the occurrence of extracted sterubin as its pure (S)‐enantiomer. Moreover, the activity of sterubin (1) was investigated for the first time in vivo, in an AD mouse model. Sterubin (1) showed a significant positive impact on short‐ and long‐term memory at low dosages.
Translating basic biological knowledge into applications remains a key issue for effectively tackling neurodegenerative, neuroinflammatory, or neuroendocrine disorders. Efficient delivery of therapeutics across the neuroprotective blood‐brain barrier (BBB) still poses a demanding challenge for drug development targeting central nervous system diseases. Validated in vitro models of the BBB could facilitate effective testing of drug candidates targeting the brain early in the drug discovery process during lead generation. We here review the potential of mono‐ or (isogenic) co‐culture BBB models based on brain capillary endothelial cells (BCECs) derived from human‐induced pluripotent stem cells (hiPSCs), and compare them to several available BBB in vitro models from primary human or non‐human cells and to rodent in vivo models, as well as to classical and widely used barrier models [Caco‐2, parallel artificial membrane permeability assay (PAMPA)]. In particular, we are discussing the features and predictivity of these models and how hiPSC‐derived BBB models could impact future discovery and development of novel CNS‐targeting therapeutics.