Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (2)
Language
- English (2)
Keywords
Institute
In this review paper, we stress the importance of the higher transcendental Wright functions of the second kind in the framework of Mathematical Physics. We first start with the analytical properties of the classical Wright functions of which we distinguish two kinds. We then justify the relevance of the Wright functions of the second kind as fundamental solutions of the time-fractional diffusion-wave equations. Indeed, we think that this approach is the most accessible point of view for describing non-Gaussian stochastic processes and the transition from sub-diffusion processes to wave propagation. Through the sections of the text and suitable appendices, we plan to address the reader in this pathway towards the applications of the Wright functions of the second kind.
The Bateman functions and the allied Havelock functions were introduced as solutions of some problems in hydrodynamics about ninety years ago, but after a period of one or two decades they were practically neglected. In handbooks, the Bateman function is only mentioned as a particular case of the confluent hypergeometric function. In order to revive our knowledge on these functions, their basic properties (recurrence functional and differential relations, series, integrals and the Laplace transforms) are presented. Some new results are also included. Special attention is directed to the Bateman and Havelock functions with integer orders, to generalizations of these functions and to the Bateman-integral function known in the literature.