Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Preprint (1)
Language
- English (3)
Keywords
- Anorganische Chemie (1)
- Germanium (1)
- Lambda5-Germanate (1)
- boron (1)
- conjugation (1)
- heat stress (1)
- hyperthermia (1)
- low-valent compounds (1)
- near-IR chromophores (1)
- pentacoordinate (1)
Institute
EU-Project number / Contract (GA) number
- 669054 (1)
In this study, we tested the hypothesis that breathing hyperoxic air (F\(_{in}\)O\(_2\) = 0.40) while exercising in a hot environment exerts negative effects on the total tissue level of haemoglobin concentration (tHb); core (T\(_{core}\)) and skin (T\(_{skin}\)) temperatures; muscle activity; heart rate; blood concentration of lactate; pH; partial pressure of oxygen (P\(_a\)O\(_2\)) and carbon dioxide; arterial oxygen saturation (S\(_a\)O\(_2\)); and perceptual responses. Ten well-trained male athletes cycled at submaximal intensity at 21°C or 33°C in randomized order: first for 20 min while breathing normal air (FinO\(_2\) = 0.21) and then 10 min with F\(_{in}\)O\(_2\) = 0.40 (HOX). At both temperatures, S\(_a\)O\(_2\) and P\(_a\)O\(_2\), but not tHb, were increased by HOX. Tskin and perception of exertion and thermal discomfort were higher at 33°C than 21°C (p < 0.01), but independent of F\(_{in}\)O\(_2\). T\(_{core}\) and muscle activity were the same under all conditions (p > 0.07). Blood lactate and heart rate were higher at 33°C than 21°C. In conclusion, during 30 min of submaximal cycling at 21°C or 33°C, T\(_{core}\), T\(_{skin}\) and T\(_{body}\), tHb, muscle activity and ratings of perceived exertion and thermal discomfort were the same under normoxic and hyperoxic conditions. Accordingly, breathing hyperoxic air (F\(_{in}\)O\(_2\) = 0.40) did not affect thermoregulation under these conditions.
In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.
The zwitterionic spirocyclic \(\lambda_5\)-germanate bis(2,3-naphthalenediolato( 2-)](pyrrolidiniomethyl)germanate (8) was synthesized and the crystal structure of its tetartoacetonitrile solvate 8 · 1/4 CH\(_3\)CN studied by single-crystal X-ray diffraction. Compound 8 was prepared by reaction of (MeO)\(_3\)GeCH\(_2\)NC\(_4\)H\(_8\) (11; NC\(_4\)H\(_8\) = pyrrolidino) with two equivalents of 2,3-naphthalenediol (isolated as 8 · 1/4 CH\(_3\)CN; yield 92%). The coordination polyhedron around the pentacoordi- naphthalenediolatonate germanium atom of 8 · 1/4 CH\(_3\)CN can be described as a strongly distorted trigonal bipyramid (the structure is displaced by 38.9% from the ideal trigonal bipyrarnid towards the ideal square pyramid), the carbon atom occupying an equatorial position. In the crystal lattice of 8 · 1/4 CH\(_3\)CN, the zwitterions form intermolecular N-H ... o hydrogen bonds leading to the formation of dimers. 1H- and \(^{13}\C-NMR studies revealed that 8 also exists in solution ([D\(_6\)]DMSO).