Refine
Has Fulltext
- yes (8)
Is part of the Bibliography
- yes (8)
Document Type
- Journal article (8)
Language
- English (8)
Keywords
- ecological momentary assessment (4)
- tinnitus (3)
- crowdsensing (2)
- mHealth (2)
- machine learning (2)
- FMRI (1)
- FNIRS (1)
- RTMS (1)
- activation (1)
- architectural design (1)
Institute
- Institut für Klinische Epidemiologie und Biometrie (6)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (2)
- Institut für Hygiene und Mikrobiologie (1)
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (1)
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen (1)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (1)
- Medizinische Klinik und Poliklinik I (1)
Tinnitus is an auditory phantom perception in the absence of an external sound stimulation. People with tinnitus often report severe constraints in their daily life. Interestingly, indications exist on gender differences between women and men both in the symptom profile as well as in the response to specific tinnitus treatments. In this paper, data of the TrackYourTinnitus platform (TYT) were analyzed to investigate whether the gender of users can be predicted. In general, the TYT mobile Health crowdsensing platform was developed to demystify the daily and momentary variations of tinnitus symptoms over time. The goal of the presented investigation is a better understanding of gender-related differences in the symptom profiles of users from TYT. Based on two questionnaires of TYT, four machine learning based classifiers were trained and analyzed. With respect to the provided daily answers, the gender of TYT users can be predicted with an accuracy of 81.7%. In this context, worries, difficulties in concentration, and irritability towards the family are the three most important characteristics for predicting the gender. Note that in contrast to existing studies on TYT, daily answers to the worst symptom question were firstly investigated in more detail. It was found that results of this question significantly contribute to the prediction of the gender of TYT users. Overall, our findings indicate gender-related differences in tinnitus and tinnitus-related symptoms. Based on evidence that gender impacts the development of tinnitus, the gathered insights can be considered relevant and justify further investigations in this direction.
Background: Tinnitus is often described as the phantom perception of a sound and is experienced by 5.1% to 42.7% of the population worldwide, at least once during their lifetime. The symptoms often reduce the patient's quality of life. The TrackYourTinnitus (TYT) mobile health (mHealth) crowdsensing platform was developed for two operating systems (OS)-Android and iOS-to help patients demystify the daily moment-to-moment variations of their tinnitus symptoms. In all platforms developed for more than one OS, it is important to investigate whether the crowdsensed data predicts the OS that was used in order to understand the degree to which the OS is a confounder that is necessary to consider.
Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.
Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case.
The increasing prevalence of smart mobile devices (e.g., smartphones) enables the combined use of mobile crowdsensing (MCS) and ecological momentary assessments (EMA) in the healthcare domain. By correlating qualitative longitudinal and ecologically valid EMA assessment data sets with sensor measurements in mobile apps, new valuable insights about patients (e.g., humans who suffer from chronic diseases) can be gained. However, there are numerous conceptual, architectural and technical, as well as legal challenges when implementing a respective software solution. Therefore, the work at hand (1) identifies these challenges, (2) derives respective recommendations, and (3) proposes a reference architecture for a MCS-EMA-platform addressing the defined recommendations. The required insights to propose the reference architecture were gained in several large-scale mHealth crowdsensing studies running for many years and different healthcare questions. To mention only two examples, we are running crowdsensing studies on questions for the tinnitus chronic disorder or psychological stress. We consider the proposed reference architecture and the identified challenges and recommendations as a contribution in two respects. First, they enable other researchers to align our practical studies with a baseline setting that can satisfy the variously revealed insights. Second, they are a proper basis to better compare data that was gathered using MCS and EMA. In addition, the combined use of MCS and EMA increasingly requires suitable architectures and associated digital solutions for the healthcare domain.
Objective. Several neuroscience tools showed the involvement of auditory cortex in chronic tinnitus. In this proof-of-principle study we probed the capability of functional near-infrared spectroscopy (fNIRS) for the measurement of brain oxygenation in auditory cortex in dependence from chronic tinnitus and from intervention with transcranial magnetic stimulation. Methods. Twenty-three patients received continuous theta burst stimulation over the left primary auditory cortex in a randomized sham-controlled neuronavigated trial (verum = 12; placebo = 11). Before and after treatment, sound-evoked brain oxygenation in temporal areas was measured with fNIRS. Brain oxygenation was measured once in healthy controls (n = 12). Results. Sound-evoked activity in right temporal areas was increased in the patients in contrast to healthy controls. Left-sided temporal activity under the stimulated area changed over the course of the trial; high baseline oxygenation was reduced and vice versa. Conclusions. By demonstrating that rTMS interacts with auditory evoked brain activity, our results confirm earlier electrophysiological findings and indicate the sensitivity of fNIRS for detecting rTMS induced changes in brain activity. Moreover, our findings of trait-and state-related oxygenation changes indicate the potential of fNIRS for the investigation of tinnitus pathophysiology and treatment response.
Tinnitus is an auditory phantom perception in the ears or head in the absence of a corresponding external stimulus. There is currently no effective treatment available that reliably reduces tinnitus. Educational counseling is a treatment approach that aims to educate patients and inform them about possible coping strategies. For this feasibility study, we implemented educational material and self-help advice in a smartphone app. Participants used the educational smartphone app unsupervised during their daily routine over a period of four months. Comparing the tinnitus outcome measures before and after smartphone-guided treatment, we measured changes in tinnitus-related distress, but not in tinnitus loudness. Improvements on the Tinnitus Severity numeric rating scale reached an effect size of 0.408, while the improvements on the Tinnitus Handicap Inventory (THI) were much smaller with an effect size of 0.168. An analysis of user behavior showed that frequent and intensive use of the app is a crucial factor for treatment success: participants that used the app more often and interacted with the app intensively reported a stronger improvement in the tinnitus. Between study allocation and final assessment, 26 of 52 participants dropped out of the study. Reasons for the dropouts and lessons for future studies are discussed in this paper.
Interactive system for similarity-based inspection and assessment of the well-being of mHealth users
(2021)
Recent digitization technologies empower mHealth users to conveniently record their Ecological Momentary Assessments (EMA) through web applications, smartphones, and wearable devices. These recordings can help clinicians understand how the users' condition changes, but appropriate learning and visualization mechanisms are required for this purpose. We propose a web-based visual analytics tool, which processes clinical data as well as EMAs that were recorded through a mHealth application. The goals we pursue are (1) to predict the condition of the user in the near and the far future, while also identifying the clinical data that mostly contribute to EMA predictions, (2) to identify users with outlier EMA, and (3) to show to what extent the EMAs of a user are in line with or diverge from those users similar to him/her. We report our findings based on a pilot study on patient empowerment, involving tinnitus patients who recorded EMAs with the mHealth app TinnitusTips. To validate our method, we also derived synthetic data from the same pilot study. Based on this setting, results for different use cases are reported.