Refine
Has Fulltext
- yes (42)
Is part of the Bibliography
- yes (42)
Year of publication
Document Type
- Journal article (42)
Language
- English (42)
Keywords
- endurance (6)
- wearable (6)
- athletes (4)
- cardiorespiratory fitness (4)
- technology (4)
- adolescents (3)
- aerobic fitness (3)
- children (3)
- eHealth (3)
- functional training (3)
Behavior Change Techniques in Wrist-Worn Wearables to Promote Physical Activity: Content Analysis
(2020)
Background:
Decreasing levels of physical activity (PA) increase the incidences of noncommunicable diseases, obesity, and mortality. To counteract these developments, interventions aiming to increase PA are urgently needed. Mobile health (mHealth) solutions such as wearable sensors (wearables) may assist with an improvement in PA.
Objective:
The aim of this study is to examine which behavior change techniques (BCTs) are incorporated in currently available commercial high-end wearables that target users’ PA behavior.
Methods:
The BCTs incorporated in 5 different high-end wearables (Apple Watch Series 3, Garmin Vívoactive 3, Fitbit Versa, Xiaomi Amazfit Stratos 2, and Polar M600) were assessed by 2 researchers using the BCT Taxonomy version 1 (BCTTv1). Effectiveness of the incorporated BCTs in promoting PA behavior was assessed by a content analysis of the existing literature.
Results:
The most common BCTs were goal setting (behavior), action planning, review behavior goal(s), discrepancy between current behavior and goal, feedback on behavior, self-monitoring of behavior, and biofeedback. Fitbit Versa, Garmin Vívoactive 3, Apple Watch Series 3, Polar M600, and Xiaomi Amazfit Stratos 2 incorporated 17, 16, 12, 11, and 11 BCTs, respectively, which are proven to effectively promote PA.
Conclusions:
Wearables employ different numbers and combinations of BCTs, which might impact their effectiveness in improving PA. To promote PA by employing wearables, we encourage researchers to develop a taxonomy specifically designed to assess BCTs incorporated in wearables. We also encourage manufacturers to customize BCTs based on the targeted populations.
The effects of circuit-like functional high-intensity training (Circuit\(_{HIIT}\)) alone or in combination with high-volume low-intensity exercise (Circuit\(_{combined}\)) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk\(^{−1}\)) of either Circuit\(_{HIIT}\) (n = 11), or Circuit\(_{combined}\) (n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent (p < 0.05) by Circuit\(_{HIIT}\), whereas Circuit\(_{combined}\) improved perception of general health more (p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, Circuit\(_{HIIT}\) improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuit\(_{Combined}\) results in better perception of general health.
The purpose of this study was to determine whether an individually designed incremental exercise protocol results in greater rates of oxygen uptake VO\(_{2max}\) than standardized testing. Fourteen well-trained, male runners performed five incremental protocols in randomized order to measure their VO\(_{2max}\): i) an incremental test (INC\(_{S+I}\)) with pre-defined increases in speed (2 min at 8.64 km.h\(^{-1}\), then a rise of 1.44 km.h\(^{-1}\) every 30 s up to 14.4 km.h\(^{-1}\)) and thereafter inclination (0.5.every 30 s); ii) an incremental test (INC\(_{I}\)) at constant speed (14.4 km.h\(^{-1}\)) and increasing inclination (2 degrees every 2 min from the initial 0 degrees); iii) an incremental test (INC\(_{S}\)) at constant inclination (0 degrees) and increasing speed (0.5 km.h\(^{-1}\) every 30 s from the initial 12.0 km.h\(^{-1}\)); iv) a graded exercise protocol (GXP) at a 1 degrees incline with increasing speed (initially 8.64 km.h\(^{-1}\) + 1.44 km.h\(^{-1}\) every 5 min); v) an individual exercise protocol (INDXP) in which the runner chose the inclination and speed. VO\(_{2max}\) was lowest (-4.2%) during the GXP (p = 0.01; d = 0.06 - 0.61) compared to all other tests. The highest rating of perceived exertion, heart rate, ventilation and end-exercise blood lactate concentration were similar between the different protocols (p < 0.05). The time to exhaustion ranged from 7 min 18 sec (INC\(_{S}\)) to 25 min 30 sec (GXP) (p = 0.01). The VO\(_{2max}\) attained by employing an individual treadmill protocol does not differ from the values derived from various standardized incremental protocols.
The aim of this pilot study was to analyze the off-training physical activity (PA) profile in national elite German U23 rowers during 31 days of their preparation period. The hours spent in each PA category (i.e., sedentary: <1.5 metabolic equivalents (MET); light physical activity: 1.5–3 MET; moderate physical activity: 3–6 MET and vigorous intense physical activity: >6 MET) were calculated for every valid day (i.e., >480 min of wear time). The off-training PA during 21 weekdays and 10 weekend days of the final 11-week preparation period was assessed by the wrist-worn multisensory device Microsoft Band II (MSBII). A total of 11 rowers provided valid data (i.e., >480 min/day) for 11.6 week days and 4.8 weekend days during the 31 days observation period. The average sedentary time was 11.63 ± 1.25 h per day during the week and 12.49 ± 1.10 h per day on the weekend, with a tendency to be higher on the weekend compared to weekdays (p = 0.06; d = 0.73). The average time in light, moderate and vigorous PA during the weekdays was 1.27 ± 1.15, 0.76 ± 0.37, 0.51 ± 0.44 h per day, and 0.67 ± 0.43, 0.59 ± 0.37, 0.53 ± 0.32 h per weekend day. Light physical activity was higher during weekdays compared to the weekend (p = 0.04; d = 0.69). Based on our pilot study of 11 national elite rowers we conclude that rowers display a considerable sedentary off-training behavior of more than 11.5 h/day.
The present study was designed to assess the psycho-physiological responses of physically untrained individuals to mobile-based multi-stimulating, circuit-like, multiple-joint conditioning (Circuit\(_{HIIT}\)) performed either once (1xCircuitHIIT) or twice (2xCircuit\(_{HIIT}\)) daily for 4 weeks. In this single-center, two-arm randomized, controlled study, 24 men and women (age: 25 ± 5 years) first received no training instructions for 4 weeks and then performed 4 weeks of either 1xCircuitHIIT or 2xCircuit\(_{HIIT}\) (5 men and 7 women in each group) daily. The 1xCircuitHIIT and 2xCircuit\(_{HIIT}\) participants carried out 90.7 and 85.7% of all planned training sessions, respectively, with average heart rates during the 6-min sessions of 74.3 and 70.8% of maximal heart rate. Body, fat and fat-free mass, and metabolic rate at rest did not differ between the groups or between time-points of measurement. Heart rate while running at 6 km⋅h\(^{-1}\) declined after the intervention in both groups. Submaximal and peak oxygen uptake, the respiratory exchange ratio and heart rate recovery were not altered by either intervention. The maximal numbers of push-ups, leg-levers, burpees, 45°-one-legged squats and 30-s skipping, as well as perception of general health improved in both groups. Our 1xCircuit\(_{HIIT}\) or 2xCircuit\(_{HIIT}\) interventions improved certain parameters of functional strength and certain dimensions of quality of life in young untrained individuals. However, they were not sufficient to enhance cardio-respiratory fitness, in particular peak oxygen uptake.
The aim was to examine certain aspects of circulatory, metabolic, hormonal, thermoregulatory, cognitive, and perceptual responses while sitting following a brief session of high-intensity interval exercise. Twelve students (five men; age, 22 ± 2 years) performed two trials involving either simply sitting for 180 min (SIT) or sitting for this same period with a 6-min session of high-intensity exercise after 60 min (SIT+HIIT). At T\(_0\) (after 30 min of resting), T\(_1\) (after a 20-min breakfast), T\(_2\) (after sitting for 1 h), T\(_3\) (immediately after the HIIT), T\(_4\), T\(_5\), T\(_6\), and T\(_7\) (30, 60, 90, and 120 min after the HIIT), circulatory, metabolic, hormonal, thermoregulatory, cognitive, and perceptual responses were assessed. The blood lactate concentration (at T\(_3\)–T\(_5\)), heart rate (at T\(_3\)–T\(_6\)), oxygen uptake (at T\(_3\)–T\(_7\)), respiratory exchange ratio, and sensations of heat (T\(_3\)–T\(_5\)), sweating (T\(_3\), T\(_4\)) and odor (T\(_3\)), as well as perception of vigor (T\(_3\)–T\(_6\)), were higher and the respiratory exchange ratio (T\(_4\)–T\(_7\)) and mean body and skin temperatures (T\(_3\)) lower in the SIT+HIIT than the SIT trial. Levels of blood glucose and salivary cortisol, cerebral oxygenation, and feelings of anxiety/depression, fatigue or hostility, as well as the variables of cognitive function assessed by the Stroop test did not differ between SIT and SIT+HIIT. In conclusion, interruption of prolonged sitting with a 6-min session of HIIT induced more pronounced circulatory and metabolic responses and improved certain aspects of perception, without affecting selected hormonal, thermoregulatory or cognitive functions.
Background
Physical activity (PA) guidelines acknowledge the health benefits of regular moderate-to-vigorous physical activity (MVPA) regardless of bout duration. However, little knowledge exists concerning the type and intensity distribution of structured and incidental lifestyle PA of students and office workers. The present study aimed to i) assess the duration and distribution of intensity of MVPAs during waking hours ≥50% of heart rate reserve (HRR), ii) to identify the type of PA through diary assessment, iii) to assign these activities into structured and lifestyle incidental PA, and iv) to compare this information between students and office workers.
Methods
Twenty-three healthy participants (11 students, 12 office workers) recorded heart rate (HR) with a wrist-worn HR monitor (Polar M600) and filled out a PA diary throughout seven consecutive days (i.e. ≥ 8 waking h/day). Relative HR zones were calculated, and PA diary information was coded using the Compendium of PA. We matched HR data with the reported PA and identified PA bouts during waking time ≥ 50% HRR concerning duration, HRR zone, type of PA, and assigned each activity to incidental and structured PA. Descriptive measures for time spend in different HRR zones and differences between students and office workers were calculated.
Results
In total, we analyzed 276.894 s (76 h 54 min 54 s) of waking time in HRR zones ≥50% and identified 169 different types of PA. The participants spend 31.9 ± 27.1 min/day or 3.9 ± 3.2% of their waking time in zones of ≥50% HRR with no difference between students and office workers (p > 0.01). The proportion of assigned incidental lifestyle PA was 76.9 ± 22.5%.
Conclusions
The present study provides initial insights regarding the type, amount, and distribution of intensity of structured and incidental lifestyle PA ≥ 50% HRR. Findings show a substantial amount of incidental lifestyle PA during waking hours and display the importance of promoting a physically active lifestyle. Future research could employ ambulatory assessments with integrated electronic diaries to detect information on the type and context of MVPA during the day.
Establishing a cardiac training group for patients with heart failure: the "HIP-in-Würzburg" study
(2022)
Background
Exercise training in heart failure (HF) is recommended but not routinely offered, because of logistic and safety-related reasons. In 2020, the German Society for Prevention&Rehabilitation and the German Society for Cardiology requested establishing dedicated ""HF training groups."" Here, we aimed to implement and evaluate the feasibility and safety of one of the first HF training groups in Germany.
Methods
Twelve patients (three women) with symptomatic HF (NYHA class II/III) and an ejection fraction ≤ 45% participated and were offered weekly, physician-supervised exercise training for 1 year. Patients received a wrist-worn pedometer (M430 Polar) and underwent the following assessments at baseline and after 4, 8 and 12 months: cardiopulmonary exercise test, 6-min walk test, echocardiography (blinded reading), and quality of life assessment (Kansas City Cardiomyopathy Questionnaire, KCCQ).
Results
All patients (median age [quartiles] 64 [49; 64] years) completed the study and participated in 76% of the offered 36 training sessions. The pedometer was worn ≥ 1000 min per day over 86% of the time. No cardiovascular events occurred during training. Across 12 months, NT-proBNP dropped from 986 pg/ml [455; 1937] to 483 pg/ml [247; 2322], and LVEF increased from 36% [29;41] to 41% [32;46]%, (p for trend = 0.01). We observed no changes in exercise capacity except for a subtle increase in peak VO2% predicted, from 66.5 [49; 77] to 67 [52; 78]; p for trend = 0.03. The physical function and social limitation domains of the KCCQ improved from 60 [54; 82] to 71 [58; 95, and from 63 [39; 83] to 78 [64; 92]; p for trend = 0.04 and = 0.01, respectively. Positive trends were further seen for the clinical and overall summary scores.
Conclusion
This pilot study showed that the implementation of a supervised HF-exercise program is feasible, safe, and has the potential to improve both quality of life and surrogate markers of HF severity. This first exercise experiment should facilitate the design of risk-adopted training programs for patients with HF.
Background: Physical activity reduces the incidences of noncommunicable diseases, obesity, and mortality, but an inactive lifestyle is becoming increasingly common. Innovative approaches to monitor and promote physical activity are warranted. While individual monitoring of physical activity aids in the design of effective interventions to enhance physical activity, a basic prerequisite is that the monitoring devices exhibit high validity.
Objective: Our goal was to assess the validity of monitoring heart rate (HR) and energy expenditure (EE) while sitting or performing light-to-vigorous physical activity with 4 popular wrist-worn wearables (Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa).
Methods: While wearing the 4 different wearables, 25 individuals performed 5 minutes each of sitting, walking, and running at different velocities (ie, 1.1 m/s, 1.9 m/s, 2.7 m/s, 3.6 m/s, and 4.1 m/s), as well as intermittent sprints. HR and EE were compared to common criterion measures: Polar-H7 chest belt for HR and indirect calorimetry for EE.
Results: While monitoring HR at different exercise intensities, the standardized typical errors of the estimates were 0.09-0.62, 0.13-0.88, 0.62-1.24, and 0.47-1.94 for the Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, respectively. Depending on exercise intensity, the corresponding coefficients of variation were 0.9%-4.3%, 2.2%-6.7%, 2.9%-9.2%, and 4.1%-19.1%, respectively, for the 4 wearables. While monitoring EE at different exercise intensities, the standardized typical errors of the estimates were 0.34-1.84, 0.32-1.33, 0.46-4.86, and 0.41-1.65 for the Apple Watch Series 4, Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, respectively. Depending on exercise intensity, the corresponding coefficients of variation were 13.5%-27.1%, 16.3%-28.0%, 15.9%-34.5%, and 8.0%-32.3%, respectively.
Conclusions: The Apple Watch Series 4 provides the highest validity (ie, smallest error rates) when measuring HR while sitting or performing light-to-vigorous physical activity, followed by the Polar Vantage V, Garmin Fenix 5, and Fitbit Versa, in that order. The Apple Watch Series 4 and Polar Vantage V are suitable for valid HR measurements at the intensities tested, but HR data provided by the Garmin Fenix 5 and Fitbit Versa should be interpreted with caution due to higher error rates at certain intensities. None of the 4 wrist-worn wearables should be employed to monitor EE at the intensities and durations tested."
Purpose
Pronounced differences in individual physiological adaptation may occur following various training mesocycles in runners. Here we aimed to assess the individual changes in performance and physiological adaptation of recreational runners performing mesocycles with different intensity, duration and frequency.
Methods
Employing a randomized cross-over design, the intra-individual physiological responses [i.e., peak (\(\dot{VO}_{2peak}\)) and submaximal (\(\dot{VO}_{2submax}\)) oxygen uptake, velocity at lactate thresholds (V\(_2\), V\(_4\))] and performance (time-to-exhaustion (TTE)) of 13 recreational runners who performed three 3-week sessions of high-intensity interval training (HIIT), high-volume low-intensity training (HVLIT) or more but shorter sessions of HVLIT (high-frequency training; HFT) were assessed.
Results
\(\dot{VO}_{2submax}\), V\(_2\), V\(_4\) and TTE were not altered by HIIT, HVLIT or HFT (p > 0.05). \(\dot{VO}_{2peak}\) improved to the same extent following HVLIT (p = 0.045) and HFT (p = 0.02). The number of moderately negative responders was higher following HIIT (15.4%); and HFT (15.4%) than HVLIT (7.6%). The number of very positive responders was higher following HVLIT (38.5%) than HFT (23%) or HIIT (7.7%). 46% of the runners responded positively to two mesocycles, while 23% did not respond to any.
Conclusion
On a group level, none of the interventions altered \(\dot{VO}_{2submax}\), V\(_2\), V\(_4\) or TTE, while HVLIT and HFT improved \(\dot{VO}_{2peak}\). The mean adaptation index indicated similar numbers of positive, negative and non-responders to HIIT, HVLIT and HFT, but more very positive responders to HVLIT than HFT or HIIT. 46% responded positively to two mesocycles, while 23% did not respond to any. These findings indicate that the magnitude of responses to HIIT, HVLIT and HFT is highly individual and no pattern was apparent.