Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Language
- English (3)
Keywords
- Structural Biology (2)
- Collybistin (1)
- Dynein Light Chain (1)
- Enzyme Regulation (1)
- Gephyrin (1)
- HECT Ligase (1)
- HUWE1 (1)
- Medicine (1)
- Molecular Biophysics (1)
- Neuroligin 2 (1)
The human ubiquitin ligase HUWE1 has key roles in tumorigenesis, yet it is unkown how its activity is regulated. We present the crystal structure of a C-terminal part of HUWE1, including the catalytic domain, and reveal an asymmetric auto-inhibited dimer. We show that HUWE1 dimerizes in solution and self-associates in cells, and that both occurs through the crystallographic dimer interface. We demonstrate that HUWE1 is inhibited in cells and that it can be activated by disruption of the dimer interface. We identify a conserved segment in HUWE1 that counteracts dimer formation by associating with the dimerization region intramolecularly. Our studies reveal, intriguingly, that the tumor suppressor p14ARF binds to this segment and may thus shift the conformational equilibrium of HUWE1 toward the inactive state. We propose a model, in which the activity of HUWE1 underlies conformational control in response to physiological cues—a mechanism that may be exploited for cancer therapy.
Structural and biochemical characterization of gephyrin and various gephyrin-ligand complexes
(2014)
Efficient synaptic neurotransmission requires the exact apposition of presynaptic terminals and matching neurotransmitter receptor clusters on the postsynaptic side. The receptors are embedded in the postsynaptic density, which also contains scaffolding and regulatory proteins that ensure high local receptor concentrations. At inhibitory synapses the cytosolic scaffolding protein gephyrin assumes an essential organizing role within the postsynaptic density by the formation of self-oligomers which provide a high density of binding sites for certain -amino butyric acid type A (GABAA) and the large majority of glycine receptors (GlyR). Gephyrin contains two oligomerization domains: In isolation, the 20 kDa N-terminal G domain (GephG) and the 46 kDa E domain (GephE) trimerize and dimerize, respectively. In the full-length protein the domains are interconnected by a central ~150 amino acid linker, and only GephG trimerization is utilized, whereas GephE dimerization is prevented, thus suggesting the need for a trigger to release GephE autoinhibition, which would pave the way for the formation of higher oligomers and for efficient receptor clustering. The structural basis for this GephE autoinhibition has remained elusive so far, but the linker was reported to be sufficient for autoinhibition. This work dealt with the biochemical and structural characterization of apo-gephyrin and gephyrin in complexes with ligands which are known to promote the formation of synaptic gephyrin clusters (collybistin and neuroligin 2) and reorganize them (dynein light chain 1).
For full-length gephyrin no structural information has been available so far. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) analyses described in this thesis disclosed that the gephyrin trimer forms a highly flexible assembly, which, due to the long linker, can switch between compact and extended conformational states in solution, with a preference for compact states. This partial compaction and potentially GephE autoinhibition are achieved by interactions of parts of the linker with the G and E domains, as suggested by circular dichroism spectroscopy. However, the linker on its own cannot account for GephE blockage, as size exclusion chromatography experiments coupled with multi angle light scattering detection (SEC-MALS) and SAXS analyses revealed that a gephyrin variant only encompassing the linker and GephE (GephLE) forms dimers and not monomers as suggested by an earlier study. The oligomeric state of GephLE and the observation that several gephyrin variants, in which linker segments of varying length were deleted, predominantly formed trimers, suggested the presence of a linker independent mechanism of GephE dimerization blockade. Taken together, the data indicated that linker-dependent and linker-independent mechanisms mediate gephyrin autoinhibition.
In the second project gephyrin’s interaction with DYNLL1 (Dynein LC8 Light Chain 1) was characterized. DYNLL1 is a 25 kDa dimer incorporated into the dynein motor and provides two binding sites, each of which can accommodate an octapeptide derived from gephyrin’s linker region (referred to as GephDB). Originally, DYNLL1 was regarded as a cargo adaptor, linking gephyrin-GlyR complexes to the dynein motor, thus driving their retrograde transport and leading to a decrease of synaptic gephyrin-GlyR complexes.
Building on these studies, this thesis assessed the cargo hypothesis as well as the so far unclear stoichiometry of the gephyrin-DYNLL1 complex. The cargo scenario would require ternary complex formation between gephyrin, DYNLL1 and the dynein intermediate chain (DIC) of the dynein motor. However, such a complex could not be detected by analytical size exclusion chromatography (aSEC) experiments – presumably because gephyrin and DIC competed for a common binding site in DYNLL1. This finding was consistent with a single DYNLL1 dimer capturing two linker segments of a single gephyrin trimer as suggested by a 26 kDa mass increase of the gephyrin species in the presence of DYNLL1 in SEC-MALS experiments. aSEC experiments at even higher concentrations (~20 µM gephyrin and ~80 µM DYNLL1) indicated that the affinity of GephDB was significantly impaired in the context of full-length gephyrin but also in a variant that bears only GephG and the first 39 residues of the linker (GephGL220). Presumably due to avidity effects two linkers stably associated with a single DYNLL1 dimer, whereas the third DYNLL1 binding motif remained predominantly unoccupied unless high concentrations of GephGL220 (50 µM) and DYNLL1 (200 µM) were used. These findings indicate that an interplay between GephG and the N-terminal linker segment mediates the attenuation of GephDB affinity towards DYNLL1 and that preventing DYNLL1 from the induction of higher gephyrin oligomers is either advantageous for DYNLL1-mediated reorganization of gephyrin-GlyR clusters or that DYNLL1 exerts possibly two (concentration-dependent) actions on gephyrin.
The gephyrin-collybistin-neuroligin 2 complex was the subject of the third project. Previously, collybistin and gephyrin were observed to mutually trigger their translocation to the postsynaptic membrane, where the disordered cytoplasmic tail of the postsynaptic cell adhesion molecule NL2 (NL2cyt) causes the anchoring of collybistin 2 (CB2) by binding to its SH3 domain, thereby releasing SH3 domain mediated autoinhibiton of CB2 binding to the membrane phospholipid phosphatidylinositol-3-phosphate. Critical for this event is the binding of gephyrin to both CB2 and NL2, presumably via GephE.
Following up on these previous studies biochemical data presented in this thesis confirm the formation of the ternary complex. Unexpectedly, analyses by means of native polyacrylamide gel electrophoresis pointed to: (1) The existence of a complex containing NL2cyt and CB2 lacking the SH3 domain and consequently an additional NL2 binding site in CB2. (2) Attenuated gephyrin-collybistin complex formation in the presence of the SH3 domain. (3) A requirement for high NL2cyt concentrations (> 30 µM) during the formation of the ternary complex. This might allow for the regulation by other factors such as additional binding partners or posttranslational modifications. Although of preliminary character, these results provide a starting point for future studies, which will hopefully elucidate the interplay between gephyrin, collybistin, NL2 and certain GABAA receptors.
Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin-conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.