Refine
Has Fulltext
- yes (12)
Is part of the Bibliography
- yes (12)
Document Type
- Journal article (12)
Language
- English (12)
Keywords
- blood pressure (2)
- cerebral autoregulation (2)
- forensic neuropathology (2)
- generalized cerebral edema (2)
- reversible posterior leukoencephalopathy syndrome (2)
- CD133 (1)
- CSF (1)
- CXCL5 (1)
- CXCL8 (1)
- CXCR2 (1)
Institute
- Pathologisches Institut (8)
- Neurologische Klinik und Poliklinik (6)
- Neurochirurgische Klinik und Poliklinik (4)
- Institut für Rechtsmedizin (3)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Institut für Klinische Neurobiologie (1)
- Institut für Virologie und Immunbiologie (1)
- Kinderklinik und Poliklinik (1)
- Klinik und Poliklinik für Nuklearmedizin (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
EU-Project number / Contract (GA) number
- 291840 (1)
The aim of this study was to investigate if the biomarkers myelin basic protein (MBP) and neurofilament-H (NF-H) yielded informative value in forensic diagnostics when examining cadaveric cerebrospinal fluid (CSF) biochemically via an enzyme-linked immunosorbent assay (ELISA) and comparing the corresponding brain tissue in fatal traumatic brain injury (TBI) autopsy cases by immunocytochemistry versus immunohistochemistry. In 21 trauma and 19 control cases, CSF was collected semi-sterile after suboccipital puncture and brain specimens after preparation. The CSF MBP (p = 0.006) and NF-H (p = 0.0002) levels after TBI were significantly higher than those in cardiovascular controls. Immunohistochemical staining against MBP and against NF-H was performed on cortical and subcortical samples from also biochemically investigated cases (5 TBI cases/5 controls). Compared to the controls, the TBI cases showed a visually reduced staining reaction against MBP or repeatedly ruptured neurofilaments against NF-H. Immunocytochemical tests showed MBP-positive phagocytizing macrophages in CSF with a survival time of > 24 h. In addition, numerous TMEM119-positive microglia could be detected with different degrees of staining intensity in the CSF of trauma cases. As a result, we were able to document that elevated levels of MBP and NF-H in the CSF should be considered as useful neuroinjury biomarkers of traumatic brain injury.
The aim of this pilot study was to investigate the diagnostic potential of TMEM119 as a useful microglia-specific marker in combination with immunostainings for phagocytic function and infiltrating capacity of monocytes in cases of lethal monosubstance intoxications by morphine (MOR), methamphetamine (METH), and of ethanol-associated death (ETH) respectively. Human brain tissue samples were obtained from forensic autopsies of cases with single substance abuse (MOR, n = 8; ETH, n = 10; METH, n = 9) and then compared to a cohort of cardiovascular fatalities as controls (n = 9). Brain tissue samples of cortex, white matter, and hippocampus were collected and stained immunohistochemically with antibodies against TMEM119, CD68KiM1P, and CCR2. We could document the lowest density of TMEM119-positive cells in MOR deaths with highly significant differences to the control densities in all three regions investigated. In ETH and METH deaths, the expression of TMEM119 was comparable to cell densities in controls. The results indicate that the immunoreaction in brain tissue is different in these groups depending on the drug type used for abuse.
Background
Scattered extracellular deposits of amyloid within the brain parenchyma can be found in a heterogeneous group of diseases. Its condensed accumulation in the white matter without evidence for systemic amyloidosis is known as primary brain amyloidoma (PBA). Although originally considered as a tumor-like lesion by its space-occupying effect, this condition displays also common hallmarks of a neurodegenerative disorder.
Case presentation
A 50-year-old woman presented with a mild cognitive decline and seizures with a right temporal, irregular and contrast-enhancing mass on magnetic resonance imaging. Suspecting a high-grade glioma, the firm tumor was subtotally resected. Neuropathological examination showed no glioma, but distinct features of a neurodegenerative disorder. The lesion was composed of amyloid AL λ aggregating within the brain parenchyma as well as the adjacent vessels, partially obstructing the vascular lumina. Immunostaining confirmed a distinct perivascular inflammatory reaction. After removal of the PBA, mnestic impairments improved considerably, the clinical course and MRI-results are stable in the 8-year follow-up.
Conclusion
Based on our histopathological findings, we propose to regard the clinicopathological entity of PBA as an overlap between a neoplastic and neurodegenerative disorder. Since the lesions are locally restricted, they might be amenable to surgery with the prospect of a definite cure.
Background
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM) have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN′,N″,N′″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A) which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM.
Methods
15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68), proliferative activity (Ki67) as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET) imaging using \(^{68}Ga-DOTATATE\) was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry.
Results
The amount of microglia/macrophages ranged from <10% to >50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns.
Conclusion
SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.
Introduction: Reversible posterior leukoencephalopathy syndrome – a reversible subacute global encephalopathy clinically presenting with headache, altered mental status, visual symptoms such as hemianopsia or cortical blindness, motor symptoms, and focal or generalized seizures – is characterized by a subcortical vasogenic edema symmetrically affecting posterior brain regions. Complete reversibility of both clinical signs and magnetic resonance imaging lesions is regarded as a defining feature of reversible posterior leukoencephalopathy syndrome. Reversible posterior leukoencephalopathy syndrome is almost exclusively seen in the setting of a predisposing clinical condition, such as pre-eclampsia, systemic infections, sepsis and shock, certain autoimmune diseases, various malignancies and cytotoxic chemotherapy, transplantation and concomitant immunosuppression (especially with calcineurin inhibitors) as well as episodes of abrupt hypertension. We describe for the first time clinical, radiological and histological findings in a case of reversible posterior leukoencephalopathy syndrome with an irreversible and fatal outcome occurring in the absence of any of the known predisposing clinical conditions except for a hypertensive episode.
Case presentation: A 58-year-old Caucasian woman presented with a two-week history of subacute and progressive occipital headache, blurred vision and imbalance of gait and with no evidence for raised arterial blood pressure during the two weeks previous to admission. Her past medical history was unremarkable except for controlled arterial hypertension. Cerebral magnetic resonance imaging demonstrated cortical and subcortical lesions with combined vasogenic and cytotoxic edema atypical for both venous congestion and arterial infarction. Routine laboratory and cerebrospinal fluid parameters were normal. The diagnosis of reversible posterior leukoencephalopathy syndrome was established.
Within hours after admission the patient showed a rapidly decreasing level of consciousness, extension and flexion synergisms, bilaterally extensor plantar responses and rapid cardiopulmonary decompensation requiring ventilatory and cardiocirculatory support. Follow-up cerebral imaging demonstrated widespread and confluent cytotoxic edematous lesions in different arterial territories, global cerebral swelling, and subsequent upper and lower brainstem herniation. Four days after admission, the patient was declared dead because of brain death.
Conclusion: This case demonstrates that fulminant and fatal reversible posterior leukoencephalopathy syndrome may occur spontaneously, that is, in the absence of any of the known predisposing systemic conditions.
Objective:
Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury.
Methods:
We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury.
Results:
Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage.
Interpretation:
The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies.
Introduction: Reversible posterior leukoencephalopathy syndrome – a reversible subacute global encephalopathy clinically presenting with headache, altered mental status, visual symptoms such as hemianopsia or cortical blindness, motor symptoms, and focal or generalized seizures – is characterized by a subcortical vasogenic edema symmetrically affecting posterior brain regions. Complete reversibility of both clinical signs and magnetic resonance imaging lesions is regarded as a defining feature of reversible posterior leukoencephalopathy syndrome. Reversible posterior leukoencephalopathy syndrome is almost exclusively seen in the setting of a predisposing clinical condition, such as pre-eclampsia, systemic infections, sepsis and shock, certain autoimmune diseases, various malignancies and cytotoxic chemotherapy, transplantation and concomitant immunosuppression (especially with calcineurin inhibitors) as well as episodes of abrupt hypertension. We describe for the first time clinical, radiological and histological findings in a case of reversible posterior leukoencephalopathy syndrome with an irreversible and fatal outcome occurring in the absence of any of the known predisposing clinical conditions except for a hypertensive episode.
Case presentation: A 58-year-old Caucasian woman presented with a two-week history of subacute and progressive occipital headache, blurred vision and imbalance of gait and with no evidence for raised arterial blood pressure during the two weeks previous to admission. Her past medical history was unremarkable except for controlled arterial hypertension. Cerebral magnetic resonance imaging demonstrated cortical and subcortical lesions with combined vasogenic and cytotoxic edema atypical for both venous congestion and arterial infarction. Routine laboratory and cerebrospinal fluid parameters were normal. The diagnosis of reversible posterior leukoencephalopathy syndrome was established. Within hours after admission the patient showed a rapidly decreasing level of consciousness, extension and flexion synergisms, bilaterally extensor plantar responses and rapid cardiopulmonary decompensation requiring ventilatory and cardiocirculatory support. Follow-up cerebral imaging demonstrated widespread and confluent cytotoxic edematous lesions in different arterial territories, global cerebral swelling, and subsequent upper and lower brainstem herniation. Four days after admission, the patient was declared dead because of brain death.
Conclusion: This case demonstrates that fulminant and fatal reversible posterior leukoencephalopathy syndrome may occur spontaneously, that is, in the absence of any of the known predisposing systemic conditions.
Postencephalitic parkinsonism (PEP) is a disease of unknown etiology and pathophysiology following encephalitis lethargica (EL), an acute-onset polioencephalitis of cryptic cause in the 1920s. PEP is a tauopathy with multisystem neuronal loss and gliosis, clinically characterized by bradykinesia, rigidity, rest tremor, and oculogyric crises. Though a viral cause of EL is likely, past polymerase chain reaction-based investigations in the etiology of both PEP and EL were negative. PEP might be caused directly by an unknown viral pathogen or the consequence of a post-infectious immunopathology. The development of metagenomic next-generation sequencing in conjunction with bioinformatic techniques has generated a broad-range tool for the detection of unknown pathogens in the recent past. Retrospective identification and characterization of pathogens responsible for past infectious diseases can be successfully performed with formalin-fixed paraffin-embedded (FFPE) tissue samples. In this study, we analyzed 24 FFPE brain samples from six patients with PEP by unbiased metagenomic next-generation sequencing. Our results show that no evidence for the presence of a specific or putative (novel) viral pathogen was found, suggesting a likely post-infectious immune-mediated etiology of PEP.
Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson’s disease mice
(2022)
Background
Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson’s disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model.
Methods
We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)\(^{-/-}\) mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4\(^{+}\)/CD8\(^{-}\), CD4\(^{-}\)/CD8\(^{+}\), or CD4\(^{+}\)/CD8\(^{+}\) (JHD\(^{-/-}\)) mice into the RAG-1\(^{-/-}\) mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized.
Results
AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68–78) and surrounding the pathogenically relevant S129 (120–134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration.
Conclusions
Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.
Differences in stem cell marker and osteopontin expression in primary and recurrent glioblastoma
(2022)
Background
Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells.
Methods
Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan–Meier analysis, a possible association with overall survival by marker expression was investigated.
Results
Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08).
Conclusions
Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation.