Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Language
- English (3)
Keywords
- Adhesion-GPCR (1)
- Chordontonal organ (1)
- Drosophila (1)
- Electrophysiology (1)
- Elektrophysiologie (1)
- Johnstons organ (1)
- Latrophilin (1)
- Mechanorezeptor (1)
- Mechanosensation (1)
- Taufliege (1)
Functional and genetic dissection of mechanosensory organs of \(Drosophila\) \(melanogaster\)
(2016)
In Drosophila larvae and adults, chordotonal organs (chos) are highly versatile mechanosensors
that are essential for proprioception, touch sensation and hearing. Chos share molecular,
anatomical and functional properties with the inner ear hair cells of mammals. These multiple
similarities make chos powerful models for the molecular study of mechanosensation.
In the present study, I have developed a preparation to directly record from the sensory neurons
of larval chos (from the lateral chos or lch5) and managed to correlate defined mechanical inputs
with the corresponding electrical outputs. The findings of this setup are described in several case
studies.
(1) The basal functional lch5 parameters, including the time course of response during continuous
mechanical stimulation and the recovery time between successive bouts of stimulation, was
characterized.
(2) The calcium-independent receptor of α-latrotoxin (dCIRL/Latrophilin), an Adhesion class G
protein-coupled receptor (aGPCR), is identified as a modulator of the mechanical signals
perceived by lch5 neurons. The results indicate that dCIRL/Latrophilin is required for the
perception of external and internal mechanical stimuli and shapes the sensitivity of neuronal
mechanosensation.
(3) By combining this setup with optogenetics, I have confirmed that dCIRL modulates lch5
neuronal activity at the level of their receptor current (sensory encoding) rather than their ability
to generate action potentials.
(4) dCIRL´s structural properties (e.g. ectodomain length) are essential for the mechanosensitive
properties of chordotonal neurons.
(5) The versatility of chos also provides an opportunity to study multimodalities at multiple levels.
In this context, I performed an experiment to directly record neuronal activities at different
temperatures. The results show that both spontaneous and mechanically evoked activity increase
in proportion to temperature, suggesting that dCIRL is not required for thermosensation in chos.
These findings, from the development of an assay of sound/vibration sensation, to neuronal
signal processing, to molecular aspects of mechanosensory transduction, have provided the first
insights into the mechanosensitivity of dCIRL.
In addition to the functional screening of peripheral sensory neurons, another
electrophysiological approach was applied in the central nervous system: dCIRL may impact the
excitability of the motor neurons in the ventral nerve cord (VNC). In the second part of my work,
whole-cell patch clamp recordings of motor neuron somata demonstrated that action potential
firing in the dCirl\(^K\)\(^O\) did not differ from control samples, indicating comparable membrane
excitability.
G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily.
Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.