Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Journal article (1)
- Doctoral Thesis (1)
Language
- English (2)
Keywords
- Interference microscopy (1)
- Konfokale Mikroskopie (1)
- Nahfeldoptik (1)
- Nanooptics (1)
- Oberflächenplasmonresonanz (1)
- Optische Spektroskopie (1)
- Plasmon propagation (1)
- Plasmonics (1)
- Scanning microscopy (1)
- Spektrale Interferenz (1)
Institute
Plasmonic modes supported by noble-metal nanostructures offer strong subwavelength electric-field confinement and promise the realization of nanometer-scale integrated optical circuits with well-defined functionality. In order to measure the spectral and spatial response functions of such plasmonic elements, we combine a confocal microscope setup with spectral interferometry detection. The setup, data acquisition, and data evaluation are discussed in detail by means of exemplary experiments involving propagating plasmons transmitted through silver nanowires. By considering and experimentally calibrating any setup-inherent signal delay with an accuracy of 1 fs, we are able to extract correct timing information of propagating plasmons. The method can be applied, e.g., to determine the dispersion and group velocity of propagating plasmons in nanostructures, and can be extended towards the investigation of nonlinear phenomena.
In this work, femtosecond laser pulses are used to launch optical excitations on different nanostructures. The excitations are confined below the diffraction limit and propagate along the nanostructures.
Fundamental properties of these ultrashort optical near fields are determined by characterizing the far-field emission after propagation with a setup developed for this task. Furthermore, control of the nanooptical excitations' spatial and temporal evolution is demonstrated for a designed nanostructure.