Refine
Has Fulltext
- yes (16)
Is part of the Bibliography
- yes (16)
Document Type
- Journal article (16)
Language
- English (16)
Keywords
- ischemic stroke (4)
- biomarker (3)
- cardiovascular events (3)
- chronic cerebrovascular disease (2)
- mortality (2)
- Amino acids (1)
- Clinical-trials (1)
- Cumulative incidence function (1)
- Fabry nephropathy (1)
- Fabry patient (1)
Background: Animal models have implicated an integral role for coagulation factors XI (FXI) and XII (FXII) in thrombus formation and propagation of ischemic stroke (IS). However, it is unknown if these molecules contribute to IS pathophysiology in humans, and might be of use as biomarkers for IS risk and severity. This study aimed to identify predictors of altered FXI and FXII levels and to determine whether there are differences in the levels of these coagulation factors between acute cerebrovascular events and chronic cerebrovascular disease (CCD). Methods: In this case-control study, 116 patients with acute ischemic stroke (AIS) or transitory ischemic attack (TIA), 117 patients with CCD, and 104 healthy volunteers (HVs) were enrolled between 2010 and 2013 at our University hospital. Blood sampling was undertaken once in the CCD and HV groups and on days 0, 1, and 3 after stroke onset in patients with AIS or TIA. Correlations between serum FXI and FXII levels and demographic and clinical parameters were tested by linear regression and analysis of variance. Results: The mean age of AIS/TIA patients was 70 ± 12. Baseline clinical severity measured with NIHSS and Barthel Index was 4.8 ± 6.0 and 74 ± 30, respectively. More than half of the patients had an AIS (58%). FXI levels were significantly correlated with different leukocyte subsets (p < 0.05). In contrast, FXII serum levels showed no significant correlation (p > 0.1). Neither FXI nor FXII levels correlated with CRP (p > 0.2). FXII levels were significantly higher in patients with CCD compared with those with AIS/TIA (mean ± SD 106 ± 26% vs. 97 ± 24%; univariate analysis: p < 0.05); these differences did not reach significance in multivariate analysis adjusted for sex and age. FXI levels did not differ significantly between study groups. Sex and age were significantly associated with FXI and/or FXII levels in patients with AIS/TIA (p < 0.05). In contrast, no statistical significant influence was found for treatment modality (thrombolysis or not), pre-treatment with platelet inhibitors, and severity of stroke. Conclusions: In this study, there was no differential regulation of FXI and FXII levels between disease subtypes but biomarker levels were associated with patient and clinical characteristics. FXI and FXII levels might be no valid biomarker for predicting stroke risk.
Background: Dose requirements of erythropoietin-stimulating agents (ESAs) can vary considerably over time and may be associated with cardiovascular outcomes. We aimed to longitudinally assess ESA responsiveness over time and to investigate its association with specific clinical end points in a time-dependent approach. Methods: The German Diabetes and Dialysis study (4D study) included 1,255 diabetic dialysis patients, of whom 1,161 were receiving ESA treatment. In those patients, the erythropoietin resistance index (ERI) was assessed every 6 months during a median follow-up of 4 years. The association between the ERI and cardiovascular end points was analyzed by time-dependent Cox regression analyses with repeated ERI measures. Results: Patients had a mean age of 66 ± 8.2 years; 53% were male. During follow-up, a total of 495 patients died, of whom 136 died of sudden death and 102 of infectious death. The adjusted and time-dependent risk for sudden death was increased by 19% per 5-unit increase in the ERI (hazard ratio, HR = 1.19, 95% confidence interval, CI = 1.07-1.33). Similarly, mortality increased by 25% (HR = 1.25, 95% CI = 1.18-1.32) and infectious death increased by 27% (HR = 1.27, 95% CI = 1.13-1.42). Further analysis revealed that lower 25-hydroxyvitamin D levels were associated with lower ESA responsiveness (p = 0.046). Conclusions: In diabetic dialysis patients, we observed that time-varying erythropoietin resistance is associated with sudden death, infectious complications and all-cause mortality. Low 25-hydroxyvitamin D levels may contribute to a lower ESA responsiveness.
Activation of the complement system and leukocytes by blood–membrane interactions may further promote arteriosclerosis typically present in patients on lipoprotein apheresis. As clinical data on the hemocompatibility of lipoprotein apheresis are scarce, a controlled clinical study comparing two different types of plasma separation and fractionation membranes used in double-filtration lipoprotein apheresis was urgently needed, as its outcome may influence clinical decision-making. In a prospective, randomized, crossover controlled trial, eight patients on double-filtration lipoprotein apheresis were subjected to one treatment with recent polyethersulfone (PES) plasma separation and fractionation membranes and one control treatment using a set of ethylene-vinyl alcohol copolymer (EVAL) membranes. White blood cell (WBC) and platelet (PC) counts, complement factor C5a and thrombin–antithrombin III (TAT) concentrations were determined in samples drawn at defined times from different sites of the extracorporeal blood and plasma circuit. With a nadir at 25 minutes, WBCs in EVAL decreased to 33.5 ± 10.7% of baseline compared with 63.8 ± 22.0% at 20 minutes in PES (P < .001). The maximum C5a levels in venous blood reentering the patients were measured at 30 minutes, being 30.0 ± 11.2 µg/L with EVAL and 12.3 ± 9.0 µg/L with PES (P < .05). The highest C5a concentrations were found in plasma after the plasma filters (EVAL 56.1 ± 22.0 µg/L at 15 minutes vs PES 23.3 ± 15.2 µg/L at 10 minutes; P < .001). PC did not significantly decrease over time with both membrane types, whereas TAT levels did not rise until the end of the treatment without differences between membranes. Regarding lipoprotein(a) and low-density lipoprotein (LDL) cholesterol removal, both membrane sets performed equally. Compared with EVAL, PES membranes cause less leukocyte and complement system activation, the classical parameters of hemocompatibility of extracorporeal treatment procedures, at identical treatment efficacy. Better hemocompatibility may avoid inflammation-promoting effects through blood–material interactions in patients requiring double-filtration lipoprotein apheresis.
High-Sensitivity Troponin: A Clinical Blood Biomarker for Staging Cardiomyopathy in Fabry Disease
(2016)
Background
High‐sensitivity troponin (hs‐TNT), a biomarker of myocardial damage, might be useful for assessing fibrosis in Fabry cardiomyopathy. We performed a prospective analysis of hs‐TNT as a biomarker for myocardial changes in Fabry patients and a retrospective longitudinal follow‐up study to assess longitudinal hs‐TNT changes relative to fibrosis and cardiomyopathy progression.
Methods and Results
For the prospective analysis, hs‐TNT from 75 consecutive patients with genetically confirmed Fabry disease was analyzed relative to typical Fabry‐associated echocardiographic findings and total myocardial fibrosis as measured by late gadolinium enhancement (LE) on magnetic resonance imaging. Longitudinal data (3.9±2.0 years), including hs‐TNT, LE, and echocardiographic findings from 58 Fabry patients, were retrospectively collected. Hs‐TNT level positively correlated with LE (linear correlation coefficient, 0.72; odds ratio, 32.81 [95% CI, 3.56–302.59]; P=0.002); patients with elevated baseline hs‐TNT (>14 ng/L) showed significantly increased LE (median: baseline, 1.9 [1.1–3.3] %; follow‐up, 3.2 [2.3–4.9] %; P<0.001) and slightly elevated hs‐TNT (baseline, 44.7 [30.1–65.3] ng/L; follow‐up, 49.1 [27.6–69.5] ng/L; P=0.116) during follow‐up. Left ventricular wall thickness and EF of patients with elevated hs‐TNT were decreased during follow‐up, indicating potential cardiomyopathy progression.
Conclusions
hs‐TNT is an accurate, easily accessible clinical blood biomarker for detecting replacement fibrosis in patients with Fabry disease and a qualified predictor of cardiomyopathy progression. Thus, hs‐TNT could be helpful for staging and follow‐up of Fabry patients.
Background: The protein C pathway plays an important role in the maintenance of endothelial barrier function and in the inflammatory and coagulant processes that are characteristic of patients on dialysis. We investigated whether common single nucleotide variants (SNV) in genes encoding protein C pathway components were associated with all-cause 5 years mortality risk in dialysis patients.
Methods: Single nucleotides variants in the factor V gene (F5 rs6025; factor V Leiden), the thrombomodulin gene (THBD rs1042580), the protein C gene (PROC rs1799808 and 1799809) and the endothelial protein C receptor gene (PROCR rs867186, rs2069951, and rs2069952) were genotyped in 1070 dialysis patients from the NEtherlands COoperative Study on the Adequacy of Dialysis (NECOSAD) cohort) and in 1243 dialysis patients from the German 4D cohort.
Results: Factor V Leiden was associated with a 1.5-fold (95% CI 1.1-1.9) increased 5-year all-cause mortality risk and carriers of the AG/GG genotypes of the PROC rs1799809 had a 1.2-fold (95% CI 1.0-1.4) increased 5-year all-cause mortality risk. The other SNVs in THBD, PROC, and PROCR were not associated with 5-years mortality.
Conclusion: Our study suggests that factor V Leiden and PROC rs1799809 contributes to an increased mortality risk in dialysis patients.
Immune cells (IC) play a crucial role in murine stroke pathophysiology. However, data are limited on the role of these cells in ischemic stroke in humans. We therefore aimed to characterize and compare peripheral IC subsets in patients with acute ischemic stroke/transient ischemic attack (AIS/TIA), chronic cerebrovascular disease (CCD) and healthy volunteers (HV). We conducted a case-control study of patients with AIS/TIA (n = 116) or CCD (n = 117), and HV (n = 104) who were enrolled at the University Hospital Würzburg from 2010 to 2013. We determined the expression and quantity of IC subsets in the three study groups and performed correlation analyses with demographic and clinical parameters. The quantity of several IC subsets differed between the AIS/TIA, CCD, and HV groups. Several clinical and demographic variables independently predicted the quantity of IC subsets in patients with AIS/TIA. No significant changes in the quantity of IC subsets occurred within the first three days after AIS/TIA. Overall, these findings strengthen the evidence for a pathophysiologic role of IC in human ischemic stroke and the potential use of IC-based biomarkers for the prediction of stroke risk. A comprehensive description of IC kinetics is crucial to enable the design of targeted treatment strategies.
Background: Sudden cardiac death is common and accounts largely for the excess mortality of patients on maintenance dialysis. It is unknown whether aldosterone and cortisol increase the incidence of sudden cardiac death in dialysis patients.
Methods and results: We analysed data from 1255 diabetic haemodialysis patients participating in the German Diabetes and Dialysis Study (4D Study). Categories of aldosterone and cortisol were determined at baseline and patients were followed for a median of 4 years. By Cox regression analyses, hazard ratios (HRs) were determined for the effect of aldosterone, cortisol, and their combination on sudden death and other adjudicated cardiovascular outcomes. The mean age of the patients was 66 ± 8 years (54% male). Median aldosterone was <15 pg/mL (detection limit) and cortisol 16.8 µg/dL. Patients with aldosterone levels >200 pg/mL had a significantly higher risk of sudden death (HR: 1.69; 95% CI: 1.06–2.69) compared with those with an aldosterone <15 pg/mL. The combined presence of high aldosterone (>200 pg/mL) and high cortisol (>21.1 µg/dL) levels increased the risk of sudden death in striking contrast to patients with low aldosterone (<15 pg/mL) and low cortisol (<13.2 µg/dL) levels (HR: 2.86, 95% CI: 1.32–6.21). Furthermore, all-cause mortality was significantly increased in the patients with high levels of both hormones (HR: 1.62, 95% CI: 1.01–2.62).
Conclusions: The joint presence of high aldosterone and high cortisol levels is strongly associated with sudden cardiac death as well as all-cause mortality in haemodialysed type 2 diabetic patients. Whether a blockade of the mineralocorticoid receptor decreases the risk of sudden death in these patients must be examined in future trials.
Background
Animal models have been instrumental in defining thrombus formation, including the role of platelet surface glycoprotein (GP) receptors, in acute ischemic stroke (AIS). However, the involvement of GP receptors in human ischemic stroke pathophysiology and their utility as biomarkers for ischemic stroke risk and severity requires elucidation.
Aims
To determine whether platelet GPIb and GPIIb/IIIa receptors are differentially expressed in patients with AIS and chronic cerebrovascular disease (CCD) compared with healthy volunteers (HV) and to identify predictors of GPIb and GPIIb/IIIa expression.
Methods
This was a case-control study of 116 patients with AIS or transient ischemic attack (TIA), 117 patients with CCD, and 104 HV who were enrolled at our University hospital from 2010 to 2013. Blood sampling was performed once in the CCD and HV groups, and at several time points in patients with AIS or TIA. Linear regression and analysis of variance were used to analyze correlations between platelet GPIb and GPIIb/IIIa receptor numbers and demographic and clinical parameters.
Results
GPIb and GPIIb/IIIa receptor numbers did not significantly differ between the AIS, CCD, and HV groups. GPIb receptor expression level correlated significantly with the magnitude of GPIIb/IIIa receptor expression and the neutrophil count. In contrast, GPIIb/IIIa receptor numbers were not associated with peripheral immune-cell sub-population counts. Creactive protein was an independent predictor of GPIIb/IIIa (not GPIb) receptor numbers.
Conclusions
Platelet GPIb and GPIIb/IIIa receptor numbers did not distinguish between patient or control groups in this study, negating their potential use as a biomarker for predicting stroke risk.
Background:
Competing risks methodology allows for an event-specific analysis of the single components of composite time-to-event endpoints. A key feature of competing risks is that there are as many hazards as there are competing risks. This is not always well accounted for in the applied literature.
Methods:
We advocate a simulation point of view for understanding competing risks. The hazards are envisaged as momentary event forces. They jointly determine the event time. Their relative magnitude determines the event type. 'Empirical simulations' using data from a recent study on cardiovascular events in diabetes patients illustrate subsequent interpretation. The method avoids concerns on identifiability and plausibility known from the latent failure time approach.
Results:
The 'empirical simulations' served as a proof of concept. Additionally manipulating baseline hazards and treatment effects illustrated both scenarios that require greater care for interpretation and how the simulation point of view aids the interpretation. The simulation algorithm applied to real data also provides for a general tool for study planning.
Conclusions:
There are as many hazards as there are competing risks. All of them should be analysed. This includes estimation of baseline hazards. Study planning must equally account for these aspects.
Aims
Sudden cardiac death (SCD) is a major contributor to the excess mortality of patients on maintenance dialysis. Homoarginine deficiency may lead to decreased nitric oxide availability and endothelial dysfunction. Based on this rationale we assessed whether homoarginine deficiency is a risk factor for SCD in dialysis patients.
Methods and results
This study examined the association of homoarginine with cardiovascular outcomes in 1255 diabetic haemodialysis patients from the German diabetes and dialysis study. During a median of 4 years of follow-up, hazard ratios (HR) (95% CI) for reaching the following pre-specified, adjudicated endpoints were determined: SCD, myocardial infarction, stroke, death due to heart failure, and combined cardiovascular events. There was a strong association of low homoarginine concentrations with the presence of congestive heart failure and left ventricular hypertrophy as well as increased levels of brain natriuretic peptide. Per unit decrease in homoarginine, the risk of SCD increased three-fold (HR 3.1, 95% CI 2.0–4.9), attenuating slightly in multivariate models (HR 2.4; 95% CI 1.5–3.9). Patients in the lowest homoarginine quintile experienced a more than two-fold increased risk of SCD, and more than three-fold increased risk of heart failure death than patients in the highest quintile, which accounted for the high incidence of combined cardiovascular events. Low homoarginine showed a trend towards increased risk of stroke, however, myocardial infarction was not meaningfully affected.
Conclusion
Low homoarginine is a strong risk factor for SCD and death due to heart failure in haemodialysis patients. Further studies are needed to elucidate the underlying mechanisms, offering the potential to develop new interventional strategies.