Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Language
- English (3)
Keywords
- self-assembly (3)
- (bi)pyridine-based ligand (1)
- Aggregat <Chemie> (1)
- Aggregation (1)
- Amphiphile Verbindungen (1)
- Kooperativität (1)
- Selbstorganisation (1)
- Supramolekulare Chemie (1)
- acid-sensitive (1)
- amphiphilic systems (1)
The presented work in the field of supramolecular chemistry describes the synthesis and detailed investigation of (bi)pyridine-based oligo(phenylene ethynylene) (OPE) amphiphiles, decorated with terminal glycol chains. The metal-ligating property of these molecules could be exploited to coordinate to Pd(II) and Pt(II) metal ions, respectively, resulting in the creation of novel metallosupramolecular π-amphiphiles of square-planar geometry.
The focus of the presented studies is on the self-assembly behaviour of the OPE ligands and their corresponding metal complexes in polar and aqueous environment. In this way, the underlying aggregation mechanism (isodesmic or cooperative) is revealed and the influence of various factors on the self-assembly process in supramolecular systems is elucidated. In this regard, the effect of the molecular design of the ligand, the coordination to a metal centre as well as the surrounding medium, the pH value and temperature is investigated.
Self-organization and self-sorting processes are responsible for the regulation and control of the vast majority of biological processes that eventually sustain life on our planet. Attempts to unveil the complexity of these systems have been devoted to the investigation of the binding processes between artificial molecules, complexes or aggregates within multicomponent mixtures, which has facilitated the emergence of the field of self-sorting in the last decade. Since, artificial systems involving discrete supramolecular structures, extended supramolecular aggregates or gel-phase materials in organic solvents or—to a lesser extent—in water have been investigated. In this review, we have collected diverse strategies employed in recent years to construct extended supramolecular aggregates in water upon self-sorting of small synthetic molecules. We have made particular emphasis on co-assembly processes in binary mixtures leading to supramolecular structures of remarkable complexity and the influence of different external variables such as solvent and concentration to direct recognition or discrimination processes between these species. The comprehension of such recognition phenomena will be crucial for the organization and evolution of complex matter.
Besides their widespread use in coordination chemistry, 2,2’‐bipyridines are known for their ability to undergo cis–trans conformational changes in response to metal ions and acids, which has been primarily investigated at the molecular level. However, the exploitation of such conformational switching in self‐assembly has remained unexplored. In this work, the use of 2,2’‐bipyridines as acid‐responsive conformational switches to tune supramolecular polymerization processes has been demonstrated. To achieve this goal, we have designed a bipyridine‐based linear bolaamphiphile, 1, that forms ordered supramolecular polymers in aqueous media through cooperative aromatic and hydrophobic interactions. Interestingly, addition of acid (TFA) induces the monoprotonation of the 2,2’‐bipyridine moiety, leading to a switch in the molecular conformation from a linear (trans) to a V‐shaped (cis) state. This increase in molecular distortion along with electrostatic repulsions of the positively charged bipyridine‐H\(^{+}\) units attenuate the aggregation tendency and induce a transformation from long fibers to shorter thinner fibers. Our findings may contribute to opening up new directions in molecular switches and stimuli‐responsive supramolecular materials.