Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (4)
Keywords
- Immunologie (2)
- Langerhans cell (1)
- Leishmania major (1)
- T-cell (1)
- ZNF365 (1)
- common variants (1)
- consortium (1)
- genetic variants (1)
- investigators (1)
- modifiers (1)
Institute
EU-Project number / Contract (GA) number
- 223175 (1)
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.
Murine epidermal Langerhans cells (LC) have been demonstrated to stimulate a vigorous T cell response to Leishmania major, a cause of human cutaneous leishmaniasis. It was therefore of interest to analyze whether LC can take up viable parasites. Epidermal cells were obtained from mouse ear skin for incubation with L. major and subsequent detection of intracellular parasites by cytochemistry. Freshly isolated LC, but not cultured LC, phagocytosed L. major and the uptake was inhibited by antibodies to the complement receptor type 3. Electron microscopic studies revealed the presence of viable amastigotes within Le. Moreover, with double-Iabeling techniques, L. major-containing LC could also be detected in infected skin. The results demonstrate that LC can internalize L. major. Since the number of organisms per infected LC remained consistently low, the prime task of LC may not be the promotion of parasite spreading but the presentation of L. major antigen to T cells and, thus, the regulation of the cellular immunity during cutaneous leishmaniasis.
Cutaneous leishmaniasis is initiated by the bite of an infected sandfly and inoculation of Leishmania major parasites into the mammalian skin. Macrophages are known to playa central role in the course of infection because they are the prime host cells and funetion as antigen-presenting eells (APC) for induetion of the eell-mediated immune response. However, in addition to maerophages in the dermis. the skin eontains epidermal Langerhans eells (LC) which ean present antigen (Ag) to T cells. Therefore, using a murine model of cutaneous leishmaniasis, we analyzed the ability of epidermal cells to induce a T eell response to L.major. The results demonstrated that freshly isolated LC, but not cuItured LC, are highly active in presenting L.major Ag in vitro to T cells from primed mice and to a L.major-specific T cell clone. Furthermore, freshly isolated LC had the ability to retain L.major Ag in immunogenic form for at least 2 days. Their efficiency was much greater than that of irradiated spleen cells, a standard population of APC. LC stimulated both T cell proliferation and production of the Iymphokines interleukin (IL)-2 and IL-4. The response was Ag specific and could be induced by lysate of L. major parasites and by live organisms. The data suggest that epidermal LC are important APC in eutaneous leishmaniasis. They may perform a critical funetion by eapturing L.major Ag in the skin and presenting it either to quiescent T eells circulating through the draining lymph node or locally to T effector cells infiltrating the cutaneous lesion.