Refine
Has Fulltext
- yes (70)
Is part of the Bibliography
- yes (70)
Year of publication
Document Type
- Journal article (68)
- Report (2)
Language
- English (70)
Keywords
- ischemic stroke (11)
- B cells (5)
- multiple sclerosis (5)
- Medizin (4)
- acute ischemic stroke (4)
- factor XII (4)
- inflammation (4)
- traumatic brain injury (4)
- MS (3)
- Mice (3)
Institute
- Neurologische Klinik und Poliklinik (61)
- Neurochirurgische Klinik und Poliklinik (12)
- Institut für Anatomie und Zellbiologie (9)
- Institut für Klinische Epidemiologie und Biometrie (6)
- Rudolf-Virchow-Zentrum (5)
- Medizinische Klinik und Poliklinik I (4)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (3)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (2)
- Institut für Experimentelle Biomedizin (2)
- Pathologisches Institut (2)
Background: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity.
Objective: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus.
Methods: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%).
Results: Seropositive patients were found to be predominantly female (p < 0.0003), to more often have signs of co-existing autoimmunity (p < 0.00001), and to experience more severe clinical attacks. A visual acuity of <= 0.1 during acute optic neuritis (ON) attacks was more frequent among seropositives (p < 0.002). Similarly, motor symptoms were more common in seropositive patients, the median Medical Research Council scale (MRC) grade worse, and MRC grades <= 2 more frequent, in particular if patients met the 2006 revised criteria (p < 0.005, p < 0.006 and p < 0.01, respectively), the total spinal cord lesion load was higher (p < 0.006), and lesions >= 6 vertebral segments as well as entire spinal cord involvement more frequent (p < 0.003 and p < 0.043). By contrast, bilateral ON at onset was more common in seronegatives (p < 0.007), as was simultaneous ON and myelitis (p < 0.001); accordingly, the time to diagnosis of NMO was shorter in the seronegative group (p < 0.029). The course of disease was more often monophasic in seronegatives (p < 0.008). Seropositives and seronegatives did not differ significantly with regard to age at onset, time to relapse, annualized relapse rates, outcome from relapse (complete, partial, no recovery), annualized EDSS increase, mortality rate, supratentorial brain lesions, brainstem lesions, history of carcinoma, frequency of preceding infections, oligoclonal bands, or CSF pleocytosis. Both the time to relapse and the time to diagnosis was longer if the disease started with ON (p < 0.002 and p < 0.013). Motor symptoms or tetraparesis at first myelitis and > 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome.
The 7th International Symposium on Neuroprotection and Neurorepair was held from May 2nd to May 5th, 2012 in Potsdam, Germany. The symposium, which directly continues the successful Magdeburg meeting series, attracted over 330 colleagues from 29 countries to discuss recent findings and advances in the field. The focus of the 2012 symposium was widened from stroke and traumatic brain injury to neurodegenerative diseases, notably dementia, and more generally the ageing brain. Thereby, emphasis was given on neurovascular aspects of neurodegeneration and stroke including the blood–brain barrier, recent findings regarding the pathomechanism of Alzheimer’s disease, and brain imaging approaches. In addition, neurobiochemical aspects of neuroprotection, the role of astrogliosis, the clinical progress of cell-based approaches as well as translational hurdles and opportunities were discussed in-depth. This review summarizes some of the most stimulating discussions and reports from the meeting.
Background: Animal models have implicated an integral role for coagulation factors XI (FXI) and XII (FXII) in thrombus formation and propagation of ischemic stroke (IS). However, it is unknown if these molecules contribute to IS pathophysiology in humans, and might be of use as biomarkers for IS risk and severity. This study aimed to identify predictors of altered FXI and FXII levels and to determine whether there are differences in the levels of these coagulation factors between acute cerebrovascular events and chronic cerebrovascular disease (CCD). Methods: In this case-control study, 116 patients with acute ischemic stroke (AIS) or transitory ischemic attack (TIA), 117 patients with CCD, and 104 healthy volunteers (HVs) were enrolled between 2010 and 2013 at our University hospital. Blood sampling was undertaken once in the CCD and HV groups and on days 0, 1, and 3 after stroke onset in patients with AIS or TIA. Correlations between serum FXI and FXII levels and demographic and clinical parameters were tested by linear regression and analysis of variance. Results: The mean age of AIS/TIA patients was 70 ± 12. Baseline clinical severity measured with NIHSS and Barthel Index was 4.8 ± 6.0 and 74 ± 30, respectively. More than half of the patients had an AIS (58%). FXI levels were significantly correlated with different leukocyte subsets (p < 0.05). In contrast, FXII serum levels showed no significant correlation (p > 0.1). Neither FXI nor FXII levels correlated with CRP (p > 0.2). FXII levels were significantly higher in patients with CCD compared with those with AIS/TIA (mean ± SD 106 ± 26% vs. 97 ± 24%; univariate analysis: p < 0.05); these differences did not reach significance in multivariate analysis adjusted for sex and age. FXI levels did not differ significantly between study groups. Sex and age were significantly associated with FXI and/or FXII levels in patients with AIS/TIA (p < 0.05). In contrast, no statistical significant influence was found for treatment modality (thrombolysis or not), pre-treatment with platelet inhibitors, and severity of stroke. Conclusions: In this study, there was no differential regulation of FXI and FXII levels between disease subtypes but biomarker levels were associated with patient and clinical characteristics. FXI and FXII levels might be no valid biomarker for predicting stroke risk.
B cell aggregates in the central nervous system (CNS) have been associated with rapid disease progression in patients with multiple sclerosis (MS). Here we demonstrate a key role of carcinoembryogenic antigen-related cell adhesion molecule1 (CEACAM1) in B cell aggregate formation in MS patients and a B cell-dependent mouse model of MS. CEACAM1 expression was increased on peripheral blood B cells and CEACAM1\(^+\) B cells were present in brain infiltrates of MS patients. Administration of the anti-CEACAM1 antibody T84.1 was efficient in blocking aggregation of B cells derived from MS patients. Along these lines, application of the monoclonal anti-CEACAM1 antibody mCC1 was able to inhibit CNS B cell aggregate formation and significantly attenuated established MS-like disease in mice in the absence of any adverse effects. CEACAM1 was co-expressed with the regulator molecule T cell immunoglobulin and mucin domain −3 (TIM-3) on B cells, a novel molecule that has recently been described to induce anergy in T cells. Interestingly, elevated coexpression on B cells coincided with an autoreactive T helper cell phenotype in MS patients. Overall, these data identify CEACAM1 as a clinically highly interesting target in MS pathogenesis and open new therapeutic avenues for the treatment of the disease.
Background:
Inhibition of early platelet adhesion by blockade of glycoprotein-IB (GPIb) protects mice from ischemic stroke. To elucidate underlying mechanisms in-vivo, infarct development was followed by ultra-high field MRI at 17.6 Tesla.
Methods:
Cerebral infarction was induced by transient-middle-cerebral-artery-occlusion (tMCAO) for 1 hour in C57/BL6 control mice (N = 10) and mice treated with 100 mg Fab-fragments of the GPIb blocking antibody p0p/B 1 h after tMCAO (N = 10). To control for the effect of reperfusion, additional mice underwent permanent occlusion and received anti-GPIb treatment (N = 6; pMCAO) or remained without treatment (N = 3; pMCAO). MRI 2 h and 24 h after MCAO measured cerebral-blood-flow (CBF) by continuous arterial-spin labelling, the apparent-diffusion-coefficient (ADC), quantitative-T2 and T2-weighted imaging. All images were registered to a standard mouse brain MRI atlas and statistically analysed voxel-wise, and by cortico-subcortical ROI analysis.
Results:
Anti-GPIb treatment led to a relative increase of postischemic CBF vs. controls in the cortical territory of the MCA (2 h: 44.2 +/- 6.9 ml/100g/min versus 24 h: 60.5 +/- 8.4; p = 0.0012, F((1,18)) = 14.63) after tMCAO. Subcortical CBF 2 h after tMCAO was higher in anti-GPIb treated animals (45.3 +/- 5.9 vs. controls: 33.6 +/- 4.3; p = 0.04). In both regions, CBF findings were clearly related to a lower probability of infarction (Cortex/Subcortex of treated group: 35%/65% vs. controls: 95%/100%) and improved quantitative-T2 and ADC. After pMCAO, anti-GPIb treated mice developed similar infarcts preceded by severe irreversible hypoperfusion as controls after tMCAO indicating dependency of stroke protection on reperfusion.
Conclusion:
Blockade of platelet adhesion by anti-GPIb-Fab-fragments results in substantially improved CBF early during reperfusion. This finding was in exact spatial correspondence with the prevention of cerebral infarction and indicates in-vivo an increased patency of the microcirculation. Thus, progression of infarction during early ischemia and reperfusion can be mitigated by anti-platelet treatment.
The efficacy and safety of first-line disease-modifying therapies (DMT) for relapsing-remitting multiple sclerosis (RRMS) has been demonstrated in pivotal, randomized trials, but these studies do not reflect the routine care setting where treatment gaps or switches are common. The Avonex as Treatment Option for Untreated MS Patients (AXIOM) trial assessed the efficacy of newly-initiated intramuscular interferon beta-1a (IM IFNb-1a) after a treatment-free interval, with particular consideration of the previous course of disease and therapy. The AXIOM trial was an open, 12-month, observational, non-interventional study with a retrospective and a prospective part conducted in Germany. RRMS patients with a treatment-free interval of at least three months were included and treated with IFNb-1a for up to 12 months. Relapse rate, disability progression, injection-related parameters and quality of life observed during the prospective part were compared with retrospectively-collected data. Two hundred and thirty five RRMS patients participated in AXIOM. The mean relapse rate decreased from 1.1 in the three months before baseline to 0.2 per quarter during the twelve-month observational period; the Multiple Sclerosis Functional Composite score improved during twelve months of IM IFNb-1a treatment, while the Expanded Disability Status Scale score did not change over the course of this study. Compared to previous DMTs (IM IFNb-1a, subcutaneous IFNb-1a (SC IFNb-1a), SC IFNb-1b, glatiramer acetate), the patients experienced less injection site reactions and flu-like symptoms, with a stated improved quality of life. IM IFNb-1a was effective and well accepted in RRMS patients with no or discontinued previous therapy. These results from the routine care setting may inform optimization of DMT treatment in RRMS, but need confirmation in further studies.
This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models.
Background:
Oral anticoagulant therapy (OAT) potently prevents strokes in patients with atrial fibrillation. Vitamin K antagonists (VKA) have been the standard of care for long-term OAT for decades, but non-VKA oral anticoagulants (NOAC) have recently been approved for this indication, and raised many questions, among them their influence on medication adherence. We assessed adherence to VKA and NOAC in secondary stroke prevention.
Methods:
All patients treated from October 2011 to September 2012 for ischemic stroke or transient ischemic attack with a subsequent indication for OAT, at three academic hospitals were entered into a prospective registry, and baseline data and antithrombotic treatment at discharge were recorded. At the 1-year follow-up, we assessed the adherence to different OAT strategies and patients' adherence to their respective OAT. We noted OAT changes, reasons to change treatment, and factors that influence persistence to the prescribed OAT.
Results:
In patients discharged on OAT, we achieved a fatality corrected response rate of 73.3% (n=209). A total of 92% of these patients received OAT at the 1-year follow-up. We observed good adherence to both VKA and NOAC (VKA, 80.9%; NOAC, 74.8%; P=0.243) with a statistically nonsignificant tendency toward a weaker adherence to dabigatran. Disability at 1-year follow-up was an independent predictor of lower adherence to any OAT after multivariate analysis, whereas the choice of OAT did not have a relevant influence.
Conclusion:
One-year adherence to OAT after stroke is strong (>90%) and patients who switch therapy most commonly switch toward another OAT. The 1-year adherence rates to VKA and NOAC in secondary stroke prevention do not differ significantly between both therapeutic strategies.
Objective:
Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury.
Methods:
We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury.
Results:
Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage.
Interpretation:
The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies.
From October 30–November 1, 2015, the 7th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. Seventy doctoral students and postdocs from over 25 different groups working in German and Swiss University Hospitals or Research Institutes attended the meeting to discuss their latest experiments and findings in the fields of neuroimmunology, neurodegeneration and neurovascular research. This meeting report summarizes the many diverse presentations and the new preclinical to clinical neurology research data that were shared by the participants at the meeting.