Refine
Has Fulltext
- yes (28)
Is part of the Bibliography
- yes (28)
Year of publication
Document Type
- Journal article (27)
- Habilitation (1)
Keywords
- Medizin (3)
- liraglutide (3)
- obesity (3)
- MIZ1 (2)
- MYC (2)
- Roux-en-Y gastric bypass surgery (2)
- chemotherapy (2)
- colorectal cancer (2)
- gastric bypass (2)
- peptide tyrosine tyrosine (PYY) (2)
Institute
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (23)
- Theodor-Boveri-Institut für Biowissenschaften (7)
- Frauenklinik und Poliklinik (5)
- Medizinische Klinik und Poliklinik I (4)
- Institut für Anatomie und Zellbiologie (3)
- Pathologisches Institut (3)
- Comprehensive Cancer Center Mainfranken (2)
- Institut für Klinische Epidemiologie und Biometrie (2)
- Institut für Molekulare Infektionsbiologie (2)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (1)
Sonstige beteiligte Institutionen
EU-Project number / Contract (GA) number
- 223153 (2)
Background: Investigation of the expression of an intestinal stem cell marker in esophageal adenocarcinomas (EAC) with and without Barrett’s Esophagus (BE), with respect to a cancer stem cell (CSC) hypothesis. Materials and methods: Expression of a putative intestinal stem cell marker LgR5 was analyzed in esophageal cancer specimen (n = 70: 41 EAC with BE, 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC) and in the adenocarcinoma cell line OE-33. Ki-67 and Cdx-2 were co-labelled with LgR5 in double staining experiments. Immunhistochemical expression results were confirmed by RT-PCR and correlated with tumor stage and five-year survival rates. Results: LgR5was found expressed in 35 of 41 (85%) EAC with BE and in 16 of 19 (81%) EAC without BE. By contrast, LgR5 was not found to be expressed in ESCC. Quantification of immunolabeling showed 15% LgR5+ cells in EAC with BE, 32% LgR5+ cells in adjacent BE and 13% in EAC without BE. Immunofluorescence double staining experiments with LgR5 and Ki-67 revealed a subpopulation (~5%) of proliferating LgR+/Ki-67+ cells. On mRNAlevel, expression of LgR5 was higher in BE in comparison to EAC (p = 0.0159). High levels of LgR5 expression in BE associated EAC were associated with poorer survival in univariate analysis. Conclusion: The stem cell marker LgR5 is expressed in EAC, irrespective of association with BE, and appears to have negative impact on survival. The subset of proliferating LgR5+ cells (<5%) might resemble rapidly cycling CSCs, which needs to be substantiated in further investigations.
Background
Investigation of the expression of an intestinal stem cell marker in esophageal adenocarcinomas (EAC) with and without Barrett's Esophagus (BE), with respect to a cancer stem cell (CSC) hypothesis.
Materials and methods
Expression of a putative intestinal stem cell marker LgR5 was analyzed in esophageal cancer specimen (n = 70: 41 EAC with BE, 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC) and in the adenocarcinoma cell line OE-33. Ki-67 and Cdx-2 were co-labelled with LgR5 in double staining experiments. Immunhistochemical expression results were confirmed by RT-PCR and correlated with tumor stage and five-year survival rates.
Results
LgR5was found expressed in 35 of 41 (85%) EAC with BE and in 16 of 19 (81%) EAC without BE. By contrast, LgR5 was not found to be expressed in ESCC. Quantification of immunolabeling showed 15% LgR5+ cells in EAC with BE, 32% LgR5+ cells in adjacent BE and 13% in EAC without BE. Immunofluorescence double staining experiments with LgR5 and Ki-67 revealed a subpopulation (~5%) of proliferating LgR+/Ki-67+ cells. On mRNA-level, expression of LgR5 was higher in BE in comparison to EAC (p = 0.0159). High levels of LgR5 expression in BE associated EAC were associated with poorer survival in univariate analysis.
Conclusion
The stem cell marker LgR5 is expressed in EAC, irrespective of association with BE, and appears to have negative impact on survival. The subset of proliferating LgR5+ cells (<5%) might resemble rapidly cycling CSCs, which needs to be substantiated in further investigations.
Background: Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS) involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L). The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods: Effective concentration (EC50) values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA) in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results: The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50>20 mmol/L and fifty-five percent had an EC50<20 mmol/L. With an EC50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L), was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT) became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L). Conclusions: Fifty-five percent of the human cancer cell lines tested were unable to protect themselves against oxidative stress mediated by ascorbic acid induced hydrogen peroxide production. The antioxidative enzyme catalase is important to protect cancer cells against cytotoxic hydrogen peroxide. Silenced catalase expression increased the susceptibility of the formerly resistant cancer cell line BT-20 to oxidative stress.
Background: Esophageal adenocarcinomas (EACs) arise due to gastroesophageal reflux, with Barrett’s esophagus (BE) regarded as precancerous lesion. Matrix metalloproteinases (MMPs) might play a role during the multistep carcinogenetic process. Methods: Expression of MMP-1 and -13 was analyzed in esophageal cancer (n = 41 EAC with BE, n = 19 EAC without BE, and n = 10 esophageal squamous-cell carcinomas, ESCC), furthermore in BE without intraepithelial neoplasia (IN) (n = 18), and the cell line OE-33. MMP-1 was co-labelled with Ki-67 (proliferation), Cdx-2 (marker for intestinal metaplasia, BE) and analyzed on mRNA level. MMP-1 staining results were correlated with clinicopatholocical parameters. Results: On protein level, MMP-1 expression was found in 39 of 41 (95%) EAC with BE, in 19 of 19 (100%) EAC without BE, in 6 of 10 (60%) ESCC, and in 10 of 18 (56%) BE without IN. No expression of MMP-13 was found in these specimens. Quantification showed 48% MMP-1 positive cells in EAC with BE, compared to 35% in adjacent BE (p < 0.05), 44% in EAC without BE, 32% in ESCC, and 4% in BE without IN. Immunofluorescence double staining experiments revealed increased MMP-1 expressing in proliferating cells (MMP-1+/Ki-67+) (r = 0.943 for BE and r = 0.811 for EAC). On mRNA-level, expression of MMP-1 was significantly higher in EAC compared to BE (p = 0.01) and confirmed immunohistochemical staining results. High MMP-1 levels were associated with lymph node metastases but not with poorer survival (p = 0.307). Conclusions: Our findings suggest that MMP-1 plays a role as preinvasive factor in BE-associated EAC. Expression of MMP-1 in proliferating BE and EAC cells suggest malignant proliferation following the clonal expansion model.
In enterocytes, protein RS1 (RSC1A1) mediates an increase of glucose absorption after ingestion of glucose-rich food via upregulation of Na+-D-glucose cotransporter SGLT1 in the brush-border membrane (BBM). Whereas RS1 decelerates the exocytotic pathway of vesicles containing SGLT1 at low glucose levels between meals, RS1-mediated deceleration is relieved after ingestion of glucose-rich food. Regulation of SGLT1 is mediated by RS1 domain RS1-Reg, in which Gln-Ser-Pro (QSP) is effective. In contrast to QSP and RS1-Reg, Gln-Glu-Pro (QEP) and RS1-Reg with a serine to glutamate exchange in the QSP motif downregulate the abundance of SGLT1 in the BBM at high intracellular glucose concentrations by about 50%. We investigated whether oral application of QEP improves diabetes in db/db mice and affects the induction of diabetes in New Zealand obese (NZO) mice under glucolipotoxic conditions. After 6-day administration of drinking water containing 5 mM QEP to db/db mice, fasting glucose was decreased, increase of blood glucose in the oral glucose tolerance test was blunted, and insulin sensitivity was increased. When QEP was added for several days to a high fat/high carbohydrate diet that induced diabetes in NZO mice, the increase of random plasma glucose was prevented, accompanied by lower plasma insulin levels. QEP is considered a lead compound for development of new antidiabetic drugs with more rapid cellular uptake. In contrast to SGLT1 inhibitors, QEP-based drugs may be applied in combination with insulin for the treatment of type 1 and type 2 diabetes, decreasing the required insulin amount, and thereby may reduce the risk of hypoglycemia.
Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n = 9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n = 5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC\(_{50}\)< 3.0 μmol/l) were identified within established (4/9) and primary patient-derived (2/5) CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC cells within both panels of established CRC cell lines and primary patient-derived CRC cell lines (6/14) that provide a rationale for combining RITA with 5FU or oxaliplatin to enhance the antiproliferative response to both chemotherapeutic agents.
The cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncogenic factor that stabilises the c-Myc protein. CIP2A is overexpressed in several tumours, and expression levels are an independent marker for long-term outcome. To determine whether CIP2A expression is elevated in colon cancer and whether it might serve as a prognostic marker for survival, we analysed CIP2A mRNA expression by real-time PCR in 104 colon cancer samples. CIP2A mRNA was overexpressed in colon cancer samples and CIP2A expression levels correlated significantly with tumour stage. We found that CIP2A serves as an independent prognostic marker for disease-free and overall survival. Further, we investigated CIP2A-dependent effects on levels of c-Myc, Akt and on cell proliferation in three colon cancer cell lines by silencing CIP2A using small interfering (si) and short hairpin (sh) RNAs. Depletion of CIP2A substantially inhibited growth of colon cell lines and reduced c-Myc levels without affecting expression or function of the upstream regulatory kinase, Akt. Expression of CIP2A was found to be dependent on MAPK activity, linking elevated c-Myc expression to deregulated signal transduction in colon cancer.
Clinical prognosis of metastasized colorectal carcinoma (CRC) is still not at desired levels and novel drugs are needed. Here, we focused on the multi-tyrosine kinase inhibitor E7080 (Lenvatinib) and assessed its therapeutic efficacy against human CRC cell lines in vitro and human CRC xenografts in vivo. The effect of E7080 on cell viability was examined on 10 humanCRCcell lines and humanendothelial cells (HUVEC). The inhibitory effect of E7080 on VEGF-induced angiogenesis was studied in an ex vivo mouse aortic ring angiogenesis assay. In addition, the efficacy of E7080 against xenografts derived fromCRC cell lines and CRC patient resection specimenswithmutated KRASwas investigated in vivo. Arelatively low cytotoxic effect of E7080 on CRC cell viabilitywas observed in vitro. Endothelial cells (HUVEC)weremore susceptible to the incubation with E7080. This is in line with the observation that E7080 demonstrated an anti-angiogenic effect in a three-dimensional ex vivo mouse aortic ring angiogenesis assay. E7080 effectively disrupted CRC cell-mediated VEGF-stimulated growth of HUVEC in vitro. Daily in vivo treatment with E7080 (5 mg/kg) significantly delayed the growth of KRAS mutated CRC xenografts with decreased density of tumor-associated vessel formations and without tumor regression. This observation is in line with results that E7080 did not significantly reduce the number of Ki67-positive cells in CRC xenografts. The results suggest antiangiogenic activity of E7080 at a dosage thatwas well tolerated by nudemice. E7080 may provide therapeutic benefits in the treatment of CRC with mutated KRAS.
Bariatric operations in obese patients with type 2 diabetes often improve diabetes before weight loss is observed. In patients mainly Roux-en-Y-gastric bypass with partial stomach resection is performed. Duodenojejunal bypass (DJB) and ileal interposition (IIP) are employed in animal experiments. Due to increased glucose exposition of L-cells located in distal ileum, all bariatric surgery procedures lead to higher secretion of antidiabetic glucagon like peptide-1 (GLP-1) after glucose gavage. After DJB also downregulation of Na\(^{+}\)-D-glucose cotransporter SGLT1 was observed. This suggested a direct contribution of decreased glucose absorption to the antidiabetic effect of bariatric surgery. To investigate whether glucose absorption is also decreased after IIP, we induced diabetes with decreased glucose tolerance and insulin sensitivity in male rats and investigated effects of IIP on diabetes and SGLT1. After IIP, we observed weight-independent improvement of glucose tolerance, increased insulin sensitivity, and increased plasma GLP-1 after glucose gavage. The interposed ileum was increased in diameter and showed increased length of villi, hyperplasia of the epithelial layer, and increased number of L-cells. The amount of SGLT1-mediated glucose uptake in interposed ileum was increased 2-fold reaching the same level as in jejunum. Thus, improvement of glycemic control by bariatric surgery does not require decreased glucose absorption.
Background
Fermented wheat germ extract (FWGE) sold under the trade name Avemar exhibits anticancer activity in vitro and in vivo. Its mechanisms of action are divided into antiproliferative and antimetabolic effects. Its influcence on cancer cell metabolism needs further investigation. One objective of this study, therefore, was to further elucidate the antimetabolic action of FWGE. The anticancer compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ) is the major bioactive compound in FWGE and is probably responsible for its anticancer activity. The second objective of this study was to compare the antiproliferative properties in vitro of FWGE and the DMBQ compound.
Methods
The IC\(_{50}\) values of FWGE were determined for nine human cancer cell lines after 24 h of culture. The DMBQ compound was used at a concentration of 24 μmol/l, which is equal to the molar concentration of DMBQ in FWGE. Cell viability, cell cycle, cellular redox state, glucose consumption, lactic acid production, cellular ATP levels, and the NADH/NAD\(^+\) ratio were measured.
Results
The mean IC\(_{50}\) value of FWGE for the nine human cancer cell lines tested was 10 mg/ml. Both FWGE (10 mg/ml) and the DMBQ compound (24 μmol/l) induced massive cell damage within 24 h after starting treatment, with changes in the cellular redox state secondary to formation of intracellular reactive oxygen species. Unlike the DMBQ compound, which was only cytotoxic, FWGE exhibited cytostatic and growth delay effects in addition to cytotoxicity. Both cytostatic and growth delay effects were linked to impaired glucose utilization which influenced the cell cycle, cellular ATP levels, and the NADH/NAD\(^+\) ratio. The growth delay effect in response to FWGE treatment led to induction of autophagy.
Conclusions
FWGE and the DMBQ compound both induced oxidative stress-promoted cytotoxicity. In addition, FWGE exhibited cytostatic and growth delay effects associated with impaired glucose utilization which led to autophagy, a possible previously unknown mechanism behind the influence of FWGE on cancer cell metabolism.