Refine
Has Fulltext
- yes (15)
Is part of the Bibliography
- yes (15)
Year of publication
Document Type
- Journal article (12)
- Working Paper (2)
- Doctoral Thesis (1)
Keywords
- Central Asia (3)
- MODIS (3)
- Information System (2)
- Remote Sensing (2)
- Uzbekistan (2)
- WebGIS (2)
- West Africa (2)
- climate change (2)
- AVHRR (1)
- AVHRR data (1)
Institute
This study compares the performance of the five widely used crop growth models (CGMs): World Food Studies (WOFOST), Coalition for Environmentally Responsible Economies (CERES)-Wheat, AquaCrop, cropping systems simulation model (CropSyst), and the semi-empiric light use efficiency approach (LUE) for the prediction of winter wheat biomass on the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site, Germany. The study focuses on the use of remote sensing (RS) data, acquired in 2015, in CGMs, as they offer spatial information on the actual conditions of the vegetation. Along with this, the study investigates the data fusion of Landsat (30 m) and Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m) data using the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) fusion algorithm. These synthetic RS data offer a 30-m spatial and one-day temporal resolution. The dataset therefore provides the necessary information to run CGMs and it is possible to examine the fine-scale spatial and temporal changes in crop phenology for specific fields, or sub sections of them, and to monitor crop growth daily, considering the impact of daily climate variability. The analysis includes a detailed comparison of the simulated and measured crop biomass. The modelled crop biomass using synthetic RS data is compared to the model outputs using the original MODIS time series as well. On comparison with the MODIS product, the study finds the performance of CGMs more reliable, precise, and significant with synthetic time series. Using synthetic RS data, the models AquaCrop and LUE, in contrast to other models, simulate the winter wheat biomass best, with an output of high R2 (>0.82), low RMSE (<600 g/m\(^2\)) and significant p-value (<0.05) during the study period. However, inputting MODIS data makes the models underperform, with low R2 (<0.68) and high RMSE (>600 g/m\(^2\)). The study shows that the models requiring fewer input parameters (AquaCrop and LUE) to simulate crop biomass are highly applicable and precise. At the same time, they are easier to implement than models, which need more input parameters (WOFOST and CERES-Wheat).
WUEMoCA — научный инструмент веб-кар¬тографирования для мониторинга эф¬фек¬тивности земле- и водопользования на территориях орошаемого земледелия стран трансграничного бассейна Араль¬ского моря (Казахстана, Кыргызстана, Таджикистана, Туркменистана, Узбеки¬стана и Афганистана). Путём интеграции спутниковых данных по землепользованию, растениеводству и потреблению воды с гидрологическими и экономическими данными создаётся целый набор показателей. Инструмент полезен для выработки масштабных решений в вопросах распределения воды и землепользования, а также может применяться во многих практических сферах, в которых требуются независимые данные о конкретных обширных территориях.
Central Asia consists of the five former Soviet States Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, therefore comprising an area of similar to 4 Mio km(2). The continental climate is characterized by hot and dry summer months and cold winter seasons with most precipitation occurring as snowfall. Accordingly, freshwater supply is strongly depending on the amount of accumulated snow as well as the moment of its release after snowmelt. The aim of the presented study is to identify possible changes in snow cover characteristics, consisting of snow cover duration, onset and offset of snow cover season within the last 28 years. Relying on remotely sensed data originating from medium resolution imagers, these snow cover characteristics are extracted on a daily basis. The resolution of 500-1000 m allows for a subsequent analysis of changes on the scale of hydrological sub-catchments. Long-term changes are identified from this unique dataset, revealing an ongoing shift towards earlier snowmelt within the Central Asian Mountains. This shift can be observed in most upstream hydro catchments within Pamir and Tian Shan Mountains and it leads to a potential change of freshwater availability in the downstream regions, exerting additional pressure on the already tensed situation.
Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR (TerraSAR-X) data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10%–15% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75% are achievable.
Die Bewässerungslandwirtschaft in Mittelasien ist geprägt von schwerwiegenden ökologischen und ökonomischen Problemen. Zur Verbesserung der Situation auf dem hydrologischen Sektor wird daher seitens der mittelasiatischen Interstate Commission for Water Coordination (ICWC) die Einführung des Integrated Water Resource Management (IWRM) gefordert. Wichtige Herausforderungen zur Optimierung der Wassernutzung im Aralsee-Becken sind dabei die Schaffung von Transparenz sowie von Möglichkeiten zur Überwachung der Landnutzung und der Wasserentnahme in den Bewässerungssystemen. Im Detail fokussierte diese Arbeit auf das Bewässerungssystem der Region Khorezm im Unterlauf des Amu Darya südlich des Aralsees. Die Arbeit zielte darauf ab, (1) objektive und konsistente Datengrundlagen zum Monitoring der Landnutzung und des Wasserverbrauchs innerhalb des Bewässerungslandes zu schaffen und (2) auf Basis dieser Ergebnisse die Funktionsweise des Bewässerungssystems zu verstehen sowie die Land- und Wassernutzung der Region zu bewerten. Um diese Ziele zu erreichen, wurden Methoden der Fernerkundung und der Hydrologie miteinander kombiniert. Fernerkundliche Schlüsselgrößen der Arbeit waren die Kartierung der agrarischen Landnutzung und die Modellierung der saisonalen tatsächlichen Evapotranspiration. Es wurde eine Methode vorgestellt, die eine Unterscheidung verschiedener Landnutzungen und Fruchtfolgen der Region durch die temporale Segmentierung von Zeitserien aus 8-tägigen Kompositen von 250 m-Daten des MODIS-Sensors ermöglicht. Durch die mehrfache Anwendung von Recursive Partitioning And Regression Trees auf deskriptive Statistiken von Zeitseriensegmenten konnte eine hohe Stabilität erzielt werden (overall accuracy: 91 %, Kappa-Koeffizient: 0,9). Täglich von MODIS aufgezeichnete Landoberflächentemperaturen (LST) bildeten die Basis zur fernerkundungsbasierten Modellierung der saisonalen tatsächlichen Evapotranspiration (ETact) für die sommerliche Vegetationsperiode. Aufgrund der hohen zeitlichen und groben räumlichen Auflösung der verwendeten MODIS-Daten von 1 km waren leichte Modifikationen des zur Modellierung eingesetzten Surface Energy Balance Algortihm for Land (SEBAL) erforderlich. Zur Modellierung von ETact wurden MODIS-Produkte (LST, Emissionsgrad, Albedo, NDVI und Blattflächenindex) und meteorologische Stationsdaten aus Khorezm verwendet. Die Modellierung des fühlbaren Wärmeflusses, einer Komponente der Energiebilanzgleichung an der Erdoberfläche, erfolgte mittels METRIC (High Resolution and Internalized Calibration), einer Variante des SEBAL. Die Landnutzungsklassifikation fungierte als zentraler Eingangsparameter, um eine automatisierte Auswahl der Ankerpunkte des Models sicherzustellen. Da innerhalb der MODIS-Auflösung aufgrund der Mischpixelproblematik keine homogen feuchten oder trockenen Bedingungen im Bewässerungsgebiet gefunden werden konnten, wurden die Landnutzungsklassifikation, der NDVI und die ASCE-Referenz-Evapotranspiration zur Abschätzung des tatsächlichen Zustands an den Ankerpunkten herangezogen. Weiterhin wurden umfassende Geländemessungen durchgeführt, um in der Vegetationsperiode 2005 die Zu- und Abflussmengen des Wasser von und nach Khorezm zu bestimmen. Die abschließende Bewertung der Land- und Wassernutzung basierte letztendlich auf der Bildung von Wasserbilanzen und der Berechnung anerkannter Performanceindikatoren wie der Ratio aus Drainage und Wasserentnahme oder der depleted fraction. Für die landwirtschaftliche Nutzung im Rayon Khorezm wurde für die Sommersaison 2005 eine Wasserentnahme von 5,38 km3 ermittelt. Damit übertrafen die Messergebnisse die offiziell verfügbaren Daten der ICWC um durchschnittlich 37 %. Auf die landwirtschaftliche Fläche bezogen ergab sich für Khorezm im Jahr 2005 eine mittlere Wasserentnahme von 22.782 m3/ha. In den Subsystemen schwankten diese Werte zwischen 17.000 m3/ha und 30.000 m3/ha. Allerdings konnte an den Systemgrenzen, an denen die Messungen durchgeführt werden, der aus den fernerkundungsbasierten Modellierungen auf WUA-Level erwartete abnehmende Gradient der Wasserentnahme zwischen Oberlauf und Unterlauf nicht nachvollzogen werden. Als Ursache für diese Diskrepanz sind vor allem die Versickerungsverluste im Kanalsystem zu nennen, die den Grundwasserkörper großräumig auffüllen und auf Feldebene nicht zur oberflächlichen Bewässerung zur Verfügung stehen. Monatliche Bilanzierungen und die Analyse der Performanceindikatoren führten zu denselben Ergebnissen. In dieser Arbeit konnte gezeigt werden, dass sich mit Methoden der Fernerkundung objektive und konsistente Daten der agrarischen Landnutzung und des Wasserverbrauchs für ein regionales Monitoring erstellen lassen. Da in den benachbarten Regionen gleiche atmosphärische Bedingungen und ähnliche Anbausorten anzutreffen sind, ist anzunehmen, dass beide Verfahren auch auf der Planungsebene in einem IWRM für die übrigen Mittel- und Unterläufe von Amu Darya und Syr Darya ein hohes Anwendungspotenzial besitzen.
The overarching goal of this research was to explore accurate methods of mapping irrigated crops, where digital cadastre information is unavailable: (a) Boundary separation by object-oriented image segmentation using very high spatial resolution (2.5–5 m) data was followed by (b) identification of crops and crop rotations by means of phenology, tasselled cap, and rule-based classification using high resolution (15–30 m) bi-temporal data. The extensive irrigated cotton production system of the Khorezm province in Uzbekistan, Central Asia, was selected as a study region. Image segmentation was carried out on pan-sharpened SPOT data. Varying combinations of segmentation parameters (shape, compactness, and color) were tested for optimized boundary separation. The resulting geometry was validated against polygons digitized from the data and cadastre maps, analysing similarity (size, shape) and congruence. The parameters shape and compactness were decisive for segmentation accuracy. Differences between crop phenologies were analyzed at field level using bi-temporal ASTER data. A rule set based on the tasselled cap indices greenness and brightness allowed for classifying crop rotations of cotton, winter-wheat and rice, resulting in an overall accuracy of 80 %. The proposed field-based crop classification method can be an important tool for use in water demand estimations, crop yield simulations, or economic models in agricultural systems similar to Khorezm.
Reliable near-surface soil moisture (θ) information is crucial for supporting risk assessment of future water usage, particularly considering the vulnerability of agroforestry systems of Mediterranean environments to climate change. We propose a simple empirical model by integrating dual-polarimetric Sentinel-1 (S1) Synthetic Aperture Radar (SAR) C-band single-look complex data and topographic information together with in-situ measurements of θ into a random forest (RF) regression approach (10-fold cross-validation). Firstly, we compare two RF models' estimation performances using either 43 SAR parameters (θNov\(^{SAR}\)) or the combination of 43 SAR and 10 terrain parameters (θNov\(^{SAR+Terrain}\)). Secondly, we analyze the essential parameters in estimating and mapping θ for S1 overpasses twice a day (at 5 a.m. and 5 p.m.) in a high spatiotemporal (17 × 17 m; 6 days) resolution. The developed site-specific calibration-dependent model was tested for a short period in November 2018 in a field-scale agroforestry environment belonging to the “Alento” hydrological observatory in southern Italy. Our results show that the combined SAR + terrain model slightly outperforms the SAR-based model (θNov\(^{SAR+Terrain}\) with 0.025 and 0.020 m3 m\(^{−3}\), and 89% compared to θNov\(^{SAR}\) with 0.028 and 0.022 m\(^3\) m\(^{−3}\, and 86% in terms of RMSE, MAE, and R2). The higher explanatory power for θNov\(^{SAR+Terrain}\) is assessed with time-variant SAR phase information-dependent elements of the C2 covariance and Kennaugh matrix (i.e., K1, K6, and K1S) and with local (e.g., altitude above channel network) and compound topographic attributes (e.g., wetness index). Our proposed methodological approach constitutes a simple empirical model aiming at estimating θ for rapid surveys with high accuracy. It emphasizes potentials for further improvement (e.g., higher spatiotemporal coverage of ground-truthing) by identifying differences of SAR measurements between S1 overpasses in the morning and afternoon.
The use of inverse methods allow efficient model calibration. This study employs PEST to calibrate a large catchment scale transient flow model. Results are demonstrated by comparing manually calibrated approaches with the automated approach. An advanced Tikhonov regularization algorithm was employed for carrying out the automated pilot point (PP) method. The results indicate that automated PP is more flexible and robust as compared to other approaches. Different statistical indicators show that this method yields reliable calibration as values of coefficient of determination (R-2) range from 0.98 to 0.99, Nash Sutcliffe efficiency (ME) range from 0.964 to 0.976, and root mean square errors (RMSE) range from 1.68 m to 1.23 m, for manual and automated approaches, respectively. Validation results of automated PP show ME as 0.969 and RMSE as 1.31 m. The results of output sensitivity suggest that hydraulic conductivity is a more influential parameter. Considering the limitations of the current study, it is recommended to perform global sensitivity and linear uncertainty analysis for the better estimation of the modelling results.
Accurate quantification of land use/cover change (LULCC) is important for efficient environmental management, especially in regions that are extremely affected by climate variability and continuous population growth such as West Africa. In this context, accurate LULC classification and statistically sound change area estimates are essential for a better understanding of LULCC processes. This study aimed at comparing mono-temporal and multi-temporal LULC classifications as well as their combination with ancillary data and to determine LULCC across the heterogeneous landscape of southwest Burkina Faso using accurate classification results. Landsat data (1999, 2006 and 2011) and ancillary data served as input features for the random forest classifier algorithm. Five LULC classes were identified: woodland, mixed vegetation, bare surface, water and agricultural area. A reference database was established using different sources including high-resolution images, aerial photo and field data. LULCC and LULC classification accuracies, area and area uncertainty were computed based on the method of adjusted error matrices. The results revealed that multi-temporal classification significantly outperformed those solely based on mono-temporal data in the study area. However, combining mono-temporal imagery and ancillary data for LULC classification had the same accuracy level as multi-temporal classification which is an indication that this combination is an efficient alternative to multi-temporal classification in the study region, where cloud free images are rare. The LULCC map obtained had an overall accuracy of 92%. Natural vegetation loss was estimated to be 17.9% ± 2.5% between 1999 and 2011. The study area experienced an increase in agricultural area and bare surface at the expense of woodland and mixed vegetation, which attests to the ongoing deforestation. These results can serve as means of regional and global land cover products validation, as they provide a new validated data set with uncertainty estimates in heterogeneous ecosystems prone to classification errors.
WUEMoCA is an operational scientific webmapping tool for the regional monitoring of land and water use efficiency in the irrigated croplands of the transboundary Aral Sea Basin that is shared by Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Afghanistan. Satellite data on land use, crop pro-duction and water consumption is integrated with hydrological and economic information to provide of a set indicators. The tool is useful for large-scale decisions on water distribution or land use, and may be seen as demonstrator for numerous applications in practice, that require independent area-wide spatial information.