Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
Language
- English (3)
Keywords
Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.
Background: Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark
in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not
only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles
and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay
between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation
in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is
impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could
contribute to axonopathy and presynaptic dysfunction in SMA.
Methods: Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons
from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and
activation.
Results: We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons.
In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived
neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular
stimuli.
Conclusions: These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals
of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.
In highly polarized neurons, endoplasmic reticulum (ER) forms a dynamic and continuous network in axons that plays important roles in lipid synthesis, Ca2+ homeostasis and the maintenance of synapses. However, the mechanisms underlying the regulation of axonal ER dynamics and its function in regulation of local translation still remain elusive. In the course of my thesis, I investigated the fast dynamic movements of ER and ribosomes in the growth cone of wildtype motoneurons as well as motoneurons from a mouse model of Spinal Muscular Atrophy (SMA), in response to Brain-derived neurotrophic factor (BDNF) stimulation. Live cell imaging data show that ER extends into axonal growth cone filopodia along actin filaments and disruption of actin cytoskeleton by cytochalasin D treatment impairs the dynamic movement of ER in the axonal filopodia. In contrast to filopodia, ER movements in the growth cone core seem to depend on coordinated actions of the actin and microtubule cytoskeleton. Myosin VI is especially required for ER movements into filopodia and drebrin A mediates actin/microtubule coordinated ER dynamics. Furthermore, we found that BDNF/TrkB signaling induces assembly of 80S ribosomes in growth cones on a time scale of seconds. Activated ribosomes relocate to the presynaptic ER and undergo local translation. These findings describe the dynamic interaction between ER and ribosomes during local translation and identify a novel potential function for the presynaptic ER in intra-axonal synthesis of transmembrane proteins such as the α-1β subunit of N-type Ca2+ channels in motoneurons. In addition, we demonstrate that in Smn-deficient motoneurons, ER dynamic movements are impaired in axonal growth cones that seems to be due to impaired actin cytoskeleton. Interestingly, ribosomes fail to undergo rapid structural changes in Smn-deficient growth cones and do not associate to ER in response to BDNF. Thus, aberrant ER dynamics and ribosome response to extracellular stimuli could affect axonal growth and presynaptic function and maintenance, thereby contributing to the pathology of SMA.