Refine
Has Fulltext
- yes (44)
Is part of the Bibliography
- yes (44)
Year of publication
Document Type
- Journal article (44)
Language
- English (44)
Keywords
- remote sensing (17)
- time series (10)
- MODIS (8)
- earth observation (7)
- machine learning (7)
- Earth observation (6)
- SAR (5)
- Sentinel-2 (5)
- deep learning (5)
- Earth Observation (4)
Institute
A disease is non-communicable when it is not transferred from one person to another. Typical examples include all types of cancer, diabetes, stroke, or allergies, as well as mental diseases. Non-communicable diseases have at least two things in common — environmental impact and chronicity. These diseases are often associated with reduced quality of life, a higher rate of premature deaths, and negative impacts on a countries' economy due to healthcare costs and missing work force. Additionally, they affect the individual's immune system, which increases susceptibility toward communicable diseases, such as the flu or other viral and bacterial infections. Thus, mitigating the effects of non-communicable diseases is one of the most pressing issues of modern medicine, healthcare, and governments in general. Apart from the predisposition toward such diseases (the genome), their occurrence is associated with environmental parameters that people are exposed to (the exposome). Exposure to stressors such as bad air or water quality, noise, extreme heat, or an overall unnatural surrounding all impact the susceptibility to non-communicable diseases. In the identification of such environmental parameters, geoinformation products derived from Earth Observation data acquired by satellites play an increasingly important role. In this paper, we present a review on the joint use of Earth Observation data and public health data for research on non-communicable diseases. We analyzed 146 articles from peer-reviewed journals (Impact Factor ≥ 2) from all over the world that included Earth Observation data and public health data for their assessments. Our results show that this field of synergistic geohealth analyses is still relatively young, with most studies published within the last five years and within national boundaries. While the contribution of Earth Observation, and especially remote sensing-derived geoinformation products on land surface dynamics is on the rise, there is still a huge potential for transdisciplinary integration into studies. We see the necessity for future research and advocate for the increased incorporation of thematically profound remote sensing products with high spatial and temporal resolution into the mapping of exposomes and thus the vulnerability and resilience assessment of a population regarding non-communicable diseases.
Large-area remote sensing time-series offer unique features for the extensive investigation of our environment. Since various error sources in the acquisition chain of datasets exist, only properly validated results can be of value for research and downstream decision processes. This review presents an overview of validation approaches concerning temporally dense time-series of land surface geo-information products that cover the continental to global scale. Categorization according to utilized validation data revealed that product intercomparisons and comparison to reference data are the conventional validation methods. The reviewed studies are mainly based on optical sensors and orientated towards global coverage, with vegetation-related variables as the focus. Trends indicate an increase in remote sensing-based studies that feature long-term datasets of land surface variables. The hereby corresponding validation efforts show only minor methodological diversification in the past two decades. To sustain comprehensive and standardized validation efforts, the provision of spatiotemporally dense validation data in order to estimate actual differences between measurement and the true state has to be maintained. The promotion of novel approaches can, on the other hand, prove beneficial for various downstream applications, although typically only theoretical uncertainties are provided.
Estimating penetration-related X-band InSAR elevation bias: a study over the Greenland ice sheet
(2019)
Accelerating melt on the Greenland ice sheet leads to dramatic changes at a global scale. Especially in the last decades, not only the monitoring, but also the quantification of these changes has gained considerably in importance. In this context, Interferometric Synthetic Aperture Radar (InSAR) systems complement existing data sources by their capability to acquire 3D information at high spatial resolution over large areas independent of weather conditions and illumination. However, penetration of the SAR signals into the snow and ice surface leads to a bias in measured height, which has to be corrected to obtain accurate elevation data. Therefore, this study purposes an easy transferable pixel-based approach for X-band penetration-related elevation bias estimation based on single-pass interferometric coherence and backscatter intensity which was performed at two test sites on the Northern Greenland ice sheet. In particular, the penetration bias was estimated using a multiple linear regression model based on TanDEM-X InSAR data and IceBridge laser-altimeter measurements to correct TanDEM-X Digital Elevation Model (DEM) scenes. Validation efforts yielded good agreement between observations and estimations with a coefficient of determination of R\(^2\) = 68% and an RMSE of 0.68 m. Furthermore, the study demonstrates the benefits of X-band penetration bias estimation within the application context of ice sheet elevation change detection.
Rice is an important food crop and a large producer of green-house relevant methane. Accurate and timely maps of paddy fields are most important in the context of food security and greenhouse gas emission modelling. During their life-cycle, rice plants undergo a phenological development that influences their interaction with waves in the visible light and infrared spectrum. Rice growth has a distinctive signature in time series of remotely-sensed data. We used time series of MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD13Q1 and MYD13Q1 and a one-class support vector machine to detect these signatures and classify paddy rice areas in continental China. Based on these classifications, we present a novel product for continental China that shows rice areas for the years 2002, 2005, 2010 and 2014 at 250-m resolution. Our classification has an overall accuracy of 0.90 and a kappa coefficient of 0.77 compared to our own reference dataset for 2014 and correlates highly with rice area statistics from China’s Statistical Yearbooks (R2 of 0.92 for 2010, 0.92 for 2005 and 0.90 for 2002). Moderate resolution time series analysis allows accurate and timely mapping of rice paddies over large areas with diverse cropping schemes.
Land Surface Temperature (LST) is an important parameter for tracing the impact of changing climatic conditions on our environment. Describing the interface between long- and shortwave radiation fluxes, as well as between turbulent heat fluxes and the ground heat flux, LST plays a crucial role in the global heat balance. Satellite-derived LST is an indispensable tool for monitoring these changes consistently over large areas and for long time periods. Data from the AVHRR (Advanced Very High-Resolution Radiometer) sensors have been available since the early 1980s. In the TIMELINE project, LST is derived for the entire operating period of AVHRR sensors over Europe at a 1 km spatial resolution. In this study, we present the validation results for the TIMELINE AVHRR daytime LST. The validation approach consists of an assessment of the temporal consistency of the AVHRR LST time series, an inter-comparison between AVHRR LST and in situ LST, and a comparison of the AVHRR LST product with concurrent MODIS (Moderate Resolution Imaging Spectroradiometer) LST. The results indicate the successful derivation of stable LST time series from multi-decadal AVHRR data. The validation results were investigated regarding different LST, TCWV and VA, as well as land cover classes. The comparisons between the TIMELINE LST product and the reference datasets show seasonal and land cover-related patterns. The LST level was found to be the most determinative factor of the error. On average, an absolute deviation of the AVHRR LST by 1.83 K from in situ LST, as well as a difference of 2.34 K from the MODIS product, was observed.
Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.
Rice is the most important food crop in Asia, and the timely mapping and monitoring of paddy rice fields subsequently emerged as an important task in the context of food security and modelling of greenhouse gas emissions. Rice growth has a distinct influence on Synthetic Aperture Radar (SAR) backscatter images, and time-series analysis of C-band images has been successfully employed to map rice fields. The poor data availability on regional scales is a major drawback of this method. We devised an approach to classify paddy rice with the use of all available Envisat ASAR WSM (Advanced Synthetic Aperture Radar Wide Swath Mode) data for our study area, the Mekong Delta in Vietnam. We used regression-based incidence angle normalization and temporal averaging to combine acquisitions from multiple tracks and years. A crop phenology-based classifier has been applied to this time series to detect single-, double- and triple-cropped rice areas (one to three harvests per year), as well as dates and lengths of growing seasons. Our classification has an overall accuracy of 85.3% and a kappa coefficient of 0.74 compared to a reference dataset and correlates highly with official rice area statistics at the provincial level (R-2 of 0.98). SAR-based time-series analysis allows accurate mapping and monitoring of rice areas even under adverse atmospheric conditions.
The natural environment and livelihoods in the Lower Mekong Basin (LMB) are significantly affected by the annual hydrological cycle. Monitoring of soil moisture as a key variable in the hydrological cycle is of great interest in a number of Hydrological and agricultural applications. In this study we evaluated the quality and spatiotemporal variability of the soil moisture product retrieved from C-band scatterometers data across the LMB sub-catchments. The soil moisture retrieval algorithm showed reasonable performance in most areas of the LMB with the exception of a few sub-catchments in the eastern parts of Laos, where the land cover is characterized by dense vegetation. The best performance of the retrieval algorithm was obtained in agricultural regions. Comparison of the available in situ evaporation data in the LMB and the Basin Water Index (BWI), an indicator of the basin soil moisture condition, showed significant negative correlations up to R = −0.85. The inter-annual variation of the calculated BWI was also found corresponding to the reported extreme hydro-meteorological events in the Mekong region. The retrieved soil moisture data show high correlation (up to R = 0.92) with monthly anomalies of precipitation in non-irrigated regions. In general, the seasonal variability of soil moisture in the LMB was well captured by the retrieval method. The results of analysis also showed significant correlation between El Niño events and the monthly BWI anomaly measurements particularly for the month May with the maximum correlation of R = 0.88.
Central Asia consists of the five former Soviet States Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, therefore comprising an area of similar to 4 Mio km(2). The continental climate is characterized by hot and dry summer months and cold winter seasons with most precipitation occurring as snowfall. Accordingly, freshwater supply is strongly depending on the amount of accumulated snow as well as the moment of its release after snowmelt. The aim of the presented study is to identify possible changes in snow cover characteristics, consisting of snow cover duration, onset and offset of snow cover season within the last 28 years. Relying on remotely sensed data originating from medium resolution imagers, these snow cover characteristics are extracted on a daily basis. The resolution of 500-1000 m allows for a subsequent analysis of changes on the scale of hydrological sub-catchments. Long-term changes are identified from this unique dataset, revealing an ongoing shift towards earlier snowmelt within the Central Asian Mountains. This shift can be observed in most upstream hydro catchments within Pamir and Tian Shan Mountains and it leads to a potential change of freshwater availability in the downstream regions, exerting additional pressure on the already tensed situation.
Forecasting spatio-temporal dynamics on the land surface using Earth Observation data — a review
(2020)
Reliable forecasts on the impacts of global change on the land surface are vital to inform the actions of policy and decision makers to mitigate consequences and secure livelihoods. Geospatial Earth Observation (EO) data from remote sensing satellites has been collected continuously for 40 years and has the potential to facilitate the spatio-temporal forecasting of land surface dynamics. In this review we compiled 143 papers on EO-based forecasting of all aspects of the land surface published in 16 high-ranking remote sensing journals within the past decade. We analyzed the literature regarding research focus, the spatial scope of the study, the forecasting method applied, as well as the temporal and technical properties of the input data. We categorized the identified forecasting methods according to their temporal forecasting mechanism and the type of input data. Time-lagged regressions which are predominantly used for crop yield forecasting and approaches based on Markov Chains for future land use and land cover simulation are the most established methods. The use of external climate projections allows the forecasting of numerical land surface parameters up to one hundred years into the future, while auto-regressive time series modeling can account for intra-annual variances. Machine learning methods have been increasingly used in all categories and multivariate modeling that integrates multiple data sources appears to be more popular than univariate auto-regressive modeling despite the availability of continuously expanding time series data. Regardless of the method, reliable EO-based forecasting requires high-level remote sensing data products and the resulting computational demand appears to be the main reason that most forecasts are conducted only on a local scale. In the upcoming years, however, we expect this to change with further advances in the field of machine learning, the publication of new global datasets, and the further establishment of cloud computing for data processing.