Refine
Has Fulltext
- yes (12)
Is part of the Bibliography
- yes (12)
Document Type
- Journal article (11)
- Preprint (1)
Language
- English (12)
Keywords
- bismuth (4)
- cationic species (3)
- aminotroponiminates (2)
- catalysis (2)
- chalcogens (2)
- dehydrocoupling (2)
- electrophilic substitution (2)
- radical reactions (2)
- Bismuth (1)
- Bor (1)
Institute
Sonstige beteiligte Institutionen
Three‐coordinate cationic bismuth compounds [Bi(diaryl)(EPMe\(_{3}\))][SbF\(_{6}\)] have been isolated and fully characterized (diaryl=[(C\(_{6}\)H\(_{4}\))\(_{2}\)C\(_{2}\)H\(_{1}\)]\(^{2-}\), E=S, Se). They represent rare examples of molecular complexes with Bi⋅⋅⋅EPR\(_{3}\) interactions (R=monoanionic substituent). The \(^{31}\)P NMR chemical shift of EPMe3 has been found to be sensitive to the formation of LA⋅⋅⋅EPMe\(_{3}\) Lewis acid/base interactions (LA=Lewis acid). This corresponds to a modification of the Gutmann–Beckett method and reveals information about the hardness/softness of the Lewis acid under investigation. A series of organobismuth compounds, bismuth halides, and cationic bismuth species have been investigated with this approach and compared to traditional group 13 and cationic group 14 Lewis acids. Especially cationic bismuth species have been shown to be potent soft Lewis acids that may prefer Lewis pair formation with a soft (S/Se‐based) rather than a hard (O/N‐based) donor. Analytical techniques applied in this work include (heteronuclear) NMR spectroscopy, single‐crystal X‐ray diffraction analysis, and DFT calculations.
The behavior of the redox‐active aminotroponiminate (ATI) ligand in the coordination sphere of bismuth has been investigated in neutral and cationic compounds, [Bi(ATI)\(_{3}\)] and [Bi(ATI)\(_{2}\)L\(_{n}\)][A] (L=neutral ligand; n=0, 1; A=counteranion). Their coordination chemistry in solution and in the solid state has been analyzed through (variable‐temperature) NMR spectroscopy, line‐shape analysis, and single‐crystal X‐ray diffraction analyses, and their Lewis acidity has been evaluated by using the Gutmann–Beckett method (and modifications thereof). Cyclic voltammetry, in combination with DFT calculations, indicates that switching between ligand‐ and metal‐centered redox events is possible by altering the charge of the compounds from 0 in neutral species to +1 in cationic compounds. This adds important facets to the rich redox chemistry of ATIs and to the redox chemistry of bismuth compounds, which is, so far, largely unexplored.
A series of diorgano(bismuth)chalcogenides, [Bi(di‐aryl)EPh], has been synthesised and fully characterised (E=S, Se, Te). These molecular bismuth complexes have been exploited in homogeneous photochemically‐induced radical catalysis, using the coupling of silanes with TEMPO as a model reaction (TEMPO=(tetramethyl‐piperidin‐1‐yl)‐oxyl). Their catalytic properties are complementary or superior to those of known catalysts for these coupling reactions. Catalytically competent intermediates of the reaction have been identified. Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single‐crystal X‐ray diffraction analysis, and (TD)‐DFT calculations.
C\(_{19}\)H\(_{16}\)N\(_2\)OS, triclinic, P (1) over bar (no. 2), a= 8.1510(3) angstrom, b = 8.8021(3) angstrom, c =11.3953(5) angstrom, alpha =72.546(2)degrees, beta=84.568(2)degrees, gamma =80.760(2)degrees, V =768.86(5) angstrom(3), Z =2, R\(_{gt}\)(F) = 0.0491, WR\(_{ref}\)(F-2) = 0.1494, T =100 K.
Bismuth Amides Mediate Facile and Highly Selective Pn–Pn Radical‐Coupling Reactions (Pn=N, P, As)
(2021)
The controlled release of well‐defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr\(_2\))\(_3\)] readily release aminyl radicals [NAr\(_2\)]. at ambient temperature in solution. These reactions yield the corresponding hydrazines, Ar\(_2\)N−NAr\(_2\), as a result of highly selective N−N coupling. The exploitation of facile homolytic Bi−Pn bond cleavage for Pn−Pn bond formation was extended to higher homologues of the pnictogens (Pn=N–As): homoleptic bismuth amides mediate the highly selective dehydrocoupling of HPnR\(_2\) to give R\(_2\)Pn−PnR\(_2\). Analyses by NMR and EPR spectroscopy, single‐crystal X‐ray diffraction, and DFT calculations reveal low Bi−N homolytic bond‐dissociation energies, suggest radical coupling in the coordination sphere of bismuth, and reveal electronic and steric parameters as effective tools to control these reactions.
Recent years have witnessed remarkable advances in radical reactions involving main‐group metal complexes. This includes the isolation and detailed characterization of main‐group metal radical compounds, but also the generation of highly reactive persistent or transient radical species. A rich arsenal of methods has been established that allows control over and exploitation of their unusual reactivity patterns. Thus, main‐group metal compounds have entered the field of selective bond formations in controlled radical reactions. Transformations that used to be the domain of late transition‐metal compounds have been realized, and unusual selectivities, high activities, as well as remarkable functional‐group tolerances have been reported. Recent findings demonstrate the potential of main‐group metal compounds to become standard tools of synthetic chemistry, catalysis, and materials science, when operating through radical pathways.
We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi–C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{−1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me–BiMe\(_2\) bonds could be achieved at moderate temperatures (60–120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions.
The diorgano(bismuth)alcoholate [Bi((C\(_{6}\)H\(_{4}\)CH\(_{2}\))\(_{2}\)S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi−O bond cleavage under given reaction conditions. Using the dehydrocoupling of silanes with either TEMPO or phenol as model reactions, the catalytic competency of 1-OPh has been investigated (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Different reaction pathways can deliberately be addressed by applying photochemical or thermal reaction conditions and by choosing radical or closed-shell substrates (TEMPO vs. phenol). Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations.
Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first “naked” (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.
Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1’-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.