Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Journal article (7)
Language
- English (7)
Keywords
- small fiber neuropathy (2)
- Alternaria (1)
- Aspergillus (1)
- Draize eye test (1)
- Fusarium (1)
- Langerhans cells (1)
- OECD guideline (1)
- Purpureocillium (1)
- Scedosporium (1)
- Streptomyces (1)
Institute
- Augenklinik und Poliklinik (4)
- Neurologische Klinik und Poliklinik (3)
- Institut für Hygiene und Mikrobiologie (1)
- Institut für Molekulare Infektionsbiologie (1)
- Institut für Pharmakologie und Toxikologie (1)
- Julius-von-Sachs-Institut für Biowissenschaften (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (1)
EU-Project number / Contract (GA) number
- 311932 (1)
Primary open-angle glaucoma (POAG) is a leading cause of blindness due to chronic degeneration of retinal ganglion cells and their optic nerve axons. It is associated with disturbed regulation of intraocular pressure, elevated intraocular levels of TGF-β2, aberrant extracellular matrix (ECM) deposition and increased outflow resistance in the trabecular meshwork (TM). The mechanisms underlying these changes are not fully understood. Cell-matrix interactions have a decisive role in TM maintenance and it has been suggested that TGF-β-induced inhibition of matrix metalloproteases may drive aberrant ECM deposition in POAG. Invadopodia and podosomes (invadosomes) are distinct sites of cell-matrix interaction and localized matrix-metalloprotease (MMP) activity. Here, we report on the effects of TGF-β2 on invadosomes in human trabecular meshwork cells. Human TM (HTM) cells were derived from donor tissue and pretreated with vehicle or TGF-β2 (2 ng/ml) for 3d. Invadosomes were studied in ECM degradation assays, protein expression and MMP-2 activity were assessed by western blot and zymography and ECM protein transcription was detected by RT-qPCR. HTM cells spontaneously formed podosomes and invadopodia as detected by colocalization of Grb2 or Nck1 to sites of gelatinolysis. Pretreatment with TGF-β2 enhanced invadosomal proteolysis and zymographic MMP-2 activity as well as MMP-2, TIMP-2 and PAI-1 levels in HTM cell culture supernatants. Rho-kinase inhibition by H1152 blocked the effects of TGF-β2. Concomitant transcription of fibronectin and collagens-1, -4 and -6 was increased by TGF-β2 and fibrillar fibronectin deposits were observed in areas of invadosomal ECM remodelling. In contrast to a current hypothesis, our data indicate that TGF-β2 induces an active ECM remodelling process in TM cells, characterized by concurrent increases in localized ECM digestion and ECM expression, rather than a mere buildup of material due to a lack of degradation. Invadosomal cell adhesion and signaling may thus have a role in POAG pathophysiology.
Background and aims:
Small fiber neuropathy (SFN) is increasingly suspected in patients with pain of uncertain origin, and making the diagnosis remains a challenge lacking a diagnostic gold standard.
Methods:
In this case–control study, we prospectively recruited 86 patients with a medical history and clinical phenotype suggestive of SFN. Patients underwent neurological examination, quantitative sensory testing (QST), and distal and proximal skin punch biopsy, and were tested for pain-associated gene loci. Fifty-five of these patients additionally underwent pain-related evoked potentials (PREP), corneal confocal microscopy (CCM), and a quantitative sudomotor axon reflex test (QSART).
Results:
Abnormal distal intraepidermal nerve fiber density (IENFD) (60/86, 70%) and neurological examination (53/86, 62%) most frequently reflected small fiber disease. Adding CCM and/or PREP further increased the number of patients with small fiber impairment to 47/55 (85%). Genetic testing revealed potentially pathogenic gene variants in 14/86 (16%) index patients. QST, QSART, and proximal IENFD were of lower impact.
Conclusion:
We propose to diagnose SFN primarily based on the results of neurological examination and distal IENFD, with more detailed phenotyping in specialized centers.
Fungal eye infections can lead to loss of vision and blindness. The disease is most prevalent in the tropics, although case numbers in moderate climates are increasing as well. This study aimed to determine the dominating filamentous fungi causing eye infections in Germany and their antifungal susceptibility profiles in order to improve treatment, including cases with unidentified pathogenic fungi. As such, we studied all filamentous fungi isolated from the eye or associated materials that were sent to the NRZMyk between 2014 and 2020. All strains were molecularly identified and antifungal susceptibility testing according to the EUCAST protocol was performed for common species. In total, 242 strains of 66 species were received. Fusarium was the dominating genus, followed by Aspergillus, Purpureocillium, Alternaria, and Scedosporium. The most prevalent species in eye samples were Fusarium petroliphilum, F. keratoplasticum, and F. solani of the Fusarium solani species complex. The spectrum of species comprises less susceptible taxa for amphotericin B, natamycin, and azoles, including voriconazole. Natamycin is effective for most species but not for Aspergillus flavus or Purpureocillium spp. Some strains of F. solani show MICs higher than 16 mg/L. Our data underline the importance of species identification for correct treatment.
Marine sponge-derived Streptomyces sp SBT343 extract inhibits staphylococcal biofilm formation
(2017)
Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections.
In the last decades significant regulatory attempts were made to replace, refine and reduce animal testing to assess the risk of consumer products for the human eye. As the original in vivo Draize eye test is criticized for limited predictivity, costs and ethical issues, several animal-free test methods have been developed to categorize substances according to the global harmonized system (GHS) for eye irritation. This review summarizes the progress of alternative test methods for the assessment of eye irritation. Based on the corneal anatomy and current knowledge of the mechanisms causing eye irritation, different ex vivo and in vitro methods will be presented and discussed with regard to possible limitations and status of regulatory acceptance. In addition to established in vitro models, this review will also highlight emerging, full thickness cornea models that might be suited to predict all GHS categories.
Objective: To assess patterns and impact of small nerve fiber dysfunction and pathology in patients with fibromyalgia syndrome (FMS).
Methods: One hundred seventeen women with FMS underwent neurological examination, questionnaire assessment, neurophysiology assessment, and small fiber tests: skin punch biopsy, corneal confocal microscopy, microneurography, quantitative sensory testing including C-tactile afferents, and pain-related evoked potentials. Data were compared with those of women with major depressive disorder and chronic widespread pain (MD-P) and healthy women.
Results: Intraepidermal nerve fiber density (IENFD) was reduced at different biopsy sites in 63% of FMS patients (MDP: 10%, controls: 18%; p < 0.001 for each). We found 4 patterns of skin innervation in FMS: normal, distally reduced, proximally reduced, and both distally and proximally reduced (p < 0.01 for each compared to controls). Microneurography revealed initial activity-dependent acceleration of conduction velocity upon low frequencies of stimulation in 1A fibers, besides 1B fiber spontaneous activity and mechanical sensitization in FMS patients. FMS patients had elevated warm detection thresholds (p < 0.01), impaired C-tactile afferents (p < 0.05), and reduced amplitudes (p < 0.001) of pain-related evoked potentials compared to controls. Compared to FMS patients with normal skin innervation, those with generalized IENFD reduction had higher pain intensity and impairment due to pain, higher disease burden, more stabbing pain and paresthesias, and more anxiety (p < 0.05 for each). FMS patients with generalized IENFD reduction also had lower corneal nerve fiber density (p < 0.01) and length (p < 0.05).
Interpretation: The extent of small fiber pathology is related to symptom severity in FMS. This knowledge may have implications for the diagnostic classification and treatment of patients with FMS.
In our study, we aimed at investigating corneal langerhans cells (LC) in patients with fibromyalgia syndrome (FMS) and small fiber neuropathy (SFN) as potential contributors to corneal small fiber pathology. We enrolled women with FMS (n = 134) and SFN (n = 41) who underwent neurological examination, neurophysiology, prostaglandin analysis in tear fluid, and corneal confocal microscopy (CCM). Data were compared with those of 60 age‐matched female controls. After screening for dry eye disease, corneal LC were counted and sub‐classified as dendritic (dLC) and non‐dendritic (ndLC) cells with or without nerve fiber association. We further analyzed corneal nerve fiber density (CNFD), length (CNFL), and branch density (CNBD). Neurological examination indicated deficits of small fiber function in patients with SFN. Nerve conduction studies were normal in all participants. Dry eye disease was more prevalent in FMS (17%) and SFN (28%) patients than in controls (5%). Tear fluid prostaglandin levels did not differ between FMS patients and controls. While corneal LC density in FMS and SFN patients was not different from controls, there were fewer dLC in association with nerve fibers in FMS and SFN patients than in controls (P < .01 each). Compared to controls, CNFL was lower in FMS and SFN patients (P < .05 each), CNFD was lower only in FMS patients (P < .05), and CNBD was lower only in SFN patients (P < .001). There was no difference in any CCM parameter between patients with and without dry eyes. Our data indicate changes in corneal innervation and LC distribution in FMS and SFN, potentially based on altered LC signaling.