### Refine

#### Has Fulltext

- yes (3)

#### Is part of the Bibliography

- yes (3)

#### Document Type

- Journal article (2)
- Doctoral Thesis (1)

#### Language

- English (3)

#### Keywords

Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.

The point of departure for the present work has been the following free boundary value problem for analytic functions $f$ which are defined on a domain $G \subset \mathbb{C}$ and map into the unit disk $\mathbb{D}= \{z \in \mathbb{C} : |z|<1 \}$. Problem 1: Let $z_1, \ldots, z_n$ be finitely many points in a bounded simply connected domain $G \subset \mathbb{C}$. Show that there exists a holomorphic function $f:G \to \mathbb{D}$ with critical points $z_j$ (counted with multiplicities) and no others such that $\lim_{z \to \xi} \frac{|f'(z)|}{1-|f(z)|^2}=1$ for all $\xi \in \partial G$. If $G=\mathbb{D}$, Problem 1 was solved by K?nau [5] in the case of one critical point, and for more than one critical point by Fournier and Ruscheweyh [3]. The method employed by K?nau, Fournier and Ruscheweyh easily extends to more general domains $G$, say bounded by a Dini-smooth Jordan curve, but does not work for arbitrary bounded simply connected domains. In this paper we present a new approach to Problem 1, which shows that this boundary value problem is not an isolated question in complex analysis, but is intimately connected to a number of basic open problems in conformal geometry and non-linear PDE. One of our results is a solution to Problem 1 for arbitrary simply connected domains. However, we shall see that our approach has also some other ramifications, for instance to a well-known problem due to Rellich and Wittich in PDE. Roughly speaking, this paper is broken down into two parts. In a first step we construct a conformal metric in a bounded regular domain $G\subset \mathbb{C}$ with prescribed non-positive Gaussian curvature $k(z)$ and prescribed singularities by solving the first boundary value problem for the Gaussian curvature equation $\Delta u =-k(z) e^{2u}$ in $G$ with prescribed singularities and continuous boundary data. This is related to the Berger-Nirenberg problem in Riemannian geometry, the question which functions on a surface R can arise as the Gaussian curvature of a Riemannian metric on R. The special case, where $k(z)=-4$ and the domain $G$ is bounded by finitely many analytic Jordan curves was treated by Heins [4]. In a second step we show every conformal pseudo-metric on a simply connected domain $G\subseteq \mathbb{C}$ with constant negative Gaussian curvature and isolated zeros of integer order is the pullback of the hyperbolic metric on $\mathbb{D}$ under an analytic map $f:G \to \mathbb{D}$. This extends a theorem of Liouville which deals with the case that the pseudo-metric has no zeros at all. These two steps together allow a complete solution of Problem 1. Contents: Chapter I contains the statement of the main results and connects them with some old and new problems in complex analysis, conformal geometry and PDE: the Uniformization Theorem for Riemann surfaces, the problem of Schwarz-Picard, the Berger-Nirenberg problem, Wittich's problem, etc.. Chapter II and III have preparatory character. In Chapter II we recall some basic results about ordinary differential equations in the complex plane. In our presentation we follow Laine [6], but we have reorganized the material and present a self-contained account of the basic features of Riccati, Schwarzian and second order differential equations. In Chapter III we discuss the first boundary value problem for the Poisson equation. We shall need to consider this problem in the most general situation, which does not seem to be covered in a satisfactory way in the existing literature, see [1,2]. In Chapter IV we turn to a discussion of conformal pseudo-metrics in planar domains. We focus on conformal metrics with prescribed singularities and prescribed non-positive Gaussian curvature. We shall establish the existence of such metrics, that is, we solve the corresponding Gaussian curvature equation by making use of the results of Chapter III. In Chapter V we show that every constantly curved pseudo-metric can be represented as the pullback of either the hyperbolic, the euclidean or the spherical metric under an analytic map. This is proved by using the results of Chapter II. Finally we give in Chapter VI some applications of our results. [1,2] Courant, H., Hilbert, D., Methoden der Mathematischen Physik, Erster/ Zweiter Band, Springer-Verlag, Berlin, 1931/1937. [3] Fournier, R., Ruscheweyh, St., Free boundary value problems for analytic functions in the closed unit disk, Proc. Amer. Math. Soc. (1999), 127 no. 11, 3287-3294. [4] Heins, M., On a class of conformal metrics, Nagoya Math. J. (1962), 21, 1-60. [5] K?nau, R., L?gentreue Randverzerrung bei analytischer Abbildung in hyperbolischer und sph?ischer Geometrie, Mitt. Math. Sem. Giessen (1997), 229, 45-53. [6] Laine, I., Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin - New York, 1993.

We prove a sharp Bernstein-type inequality for complex polynomials which are positive and satisfy a polynomial growth condition on the positive real axis. This leads to an improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not. 2019: 3301–3312, 2019) on the weighted martingale Carleson embedding theorem with matrix weights. In the scalar case this new upper bound is optimal.