Refine
Has Fulltext
- yes (10)
Is part of the Bibliography
- yes (10)
Document Type
- Journal article (9)
- Doctoral Thesis (1)
Language
- English (10)
Keywords
- BMI (1)
- Biologie (1)
- Cutaneous lymphoma (1)
- Epigenetic regulation (1)
- Gen notch (1)
- Gene regulation (1)
- Genregulation (1)
- HDAC (1)
- Hey Proteine (1)
- Hey proteins (1)
Institute
- Theodor-Boveri-Institut für Biowissenschaften (3)
- Institut für Humangenetik (2)
- Rudolf-Virchow-Zentrum (2)
- Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II) (1)
- Graduate School of Life Sciences (1)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (1)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (1)
EU-Project number / Contract (GA) number
- 223175 (1)
TNF receptor type 2 (TNFR2) has gained attention as a costimulatory receptor for T cells and as critical factor for the development of regulatory T cells (Treg) and myeloid suppressor cells. Using the TNFR2-specific agonist TNCscTNF80, direct effects of TNFR2 activation on myeloid cells and T cells were investigated in mice. \(In\) \(vitro\), TNCscTNF80 induced T cell proliferation in a costimulatory fashion, and also supported \(in\) \(vitro\) expansion of Treg cells. In addition, activation of TNFR2 retarded differentiation of bone marrow-derived immature myeloid cells in culture and reduced their suppressor function. \(In\) \(vivo\) application of TNCscTNF80-induced mild myelopoiesis in naïve mice without affecting the immune cell composition. Already a single application expanded Treg cells and improved suppression of CD4 T cells in mice with chronic inflammation. By contrast, multiple applications of the TNFR2 agonist were required to expand Treg cells in naïve mice. Improved suppression of T cell proliferation depended on expression of TNFR2 by T cells in mice repeatedly treated with TNCscTNF80, without a major contribution of TNFR2 on myeloid cells. Thus, TNFR2 activation on T cells in naïve mice can lead to immune suppression \(in\) \(vivo\). These findings support the important role of TNFR2 for Treg cells in immune regulation.
Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.
BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.
We aimed to compare the clinical data at first presentation to inpatient treatment of children (<14 years) vs. adolescents (≥14 years) with anorexia nervosa (AN), focusing on duration of illness before hospital admission and body mass index (BMI) at admission and discharge, proven predictors of the outcomes of adolescent AN. Clinical data at first admission and at discharge in 289 inpatients with AN (children: n = 72; adolescents: n = 217) from a German multicenter, web-based registry for consecutively enrolled patients with childhood and adolescent AN were analyzed. Inclusion criteria were a maximum age of 18 years, first inpatient treatment due to AN, and a BMI <10th BMI percentile at admission. Compared to adolescents, children with AN had a shorter duration of illness before admission (median: 6.0 months vs. 8.0 months, p = 0.004) and higher BMI percentiles at admission (median: 0.7 vs. 0.2, p = 0.004) as well as at discharge (median: 19.3 vs. 15.1, p = 0.011). Thus, in our study, children with AN exhibited clinical characteristics that have been associated with better outcomes, including higher admission and discharge BMI percentile. Future studies should examine whether these factors are actually associated with positive long-term outcomes in children.
The Notch signaling pathway is crucial for mammalian heart development. It controls cell-fate decisions, coordinates patterning processes and regulates proliferation and differentiation. Critical Notch effectors are Hey bHLH transcription factors (TF) that are expressed in atrial (Hey1) and ventricular (Hey2) cardiomyocytes (CM) and in the developing endocardium (Hey1/2/L). The importance of Hey proteins for cardiac development is demonstrated by knockout (KO) mice, which suffer from lethal cardiac defects, such as ventricular septum defects (VSD), valve defects and cardiomyopathy. Despite this clear functional relevance, little is known about Hey downstream targets in the heart and the molecular mechanism by which they are regulated.
Here, I use a cell culture system with inducible Hey1, Hey2 or HeyL expression to study Hey target gene regulation in HEK293 cells, in murine embryonic stem cells (ESC) and in ESC derived CM. In HEK293 cells, I could show that genome wide binding sites largely overlap between all three Hey proteins, but HeyL has many additional binding sites that are not bound by Hey1 or Hey2. Shared binding sites are located close to transcription start sites (TSS) where Hey proteins preferentially bind to canonical E boxes, although more loosely defined modes of binding exist. Additional sites only bound by HeyL are more scattered across the genome. The ability of HeyL to bind these sites depends on the C-terminal part of the protein. Although there are genes which are differently regulated by HeyL, it is unclear whether this regulation results from binding of additional sites by HeyL.
Additionally, Hey target gene regulation was studied in ESC and differentiated CM, which are more relevant for the observed cardiac phenotypes. ESC derived CM contract in culture and are positive for typical cardiac markers by qRT PCR and staining. According to these markers differentiation is unaffected by prolonged Hey1 or Hey2 overexpression. Regulated genes are largely redundant between Hey1 and Hey2. These are mainly other TF involved in e.g. developmental processes, apoptosis, cell migration and cell cycle. Many target genes are cell type specifically regulated causing a shift in Hey repression of genes involved in cell migration in ESC to repression of genes involved in cell cycle in CM.
The number of Hey binding sites is reduced in CM and HEK293 cells compared to ESC, most likely due to more regions of dense chromatin in differentiated cells. Binding sites are enriched at the proximal promoters of down-regulated genes, compared to up-or non-regulated genes. This indicates that up-regulation primarily results from indirect effects, while down-regulation is the direct results of Hey binding to target promoters. The extent of repression generally correlates with the amount of Hey binding and subsequent recruitment of histone deacetylases (Hdac) to target promoters resulting in histone H3 deacetylation.
However, in CM the repressive effect of Hey binding on a subset of genes can be annulled, likely due to binding of cardiac specific activators like Srf, Nkx2-5 and Gata4. These factors seem not to interfere with Hey binding in CM, but they recruit histone acetylases such as p300 that may counteract Hey mediated histone H3 deacetylation. Such a scenario explains differential regulation of Hey target genes between ESC and CM resulting in gene and cell-type specific regulation.
Elucidating the mechanism of action of domatinostat (4SC-202) in cutaneous T cell lymphoma cells
(2019)
Background
Targeting epigenetic modifiers is effective in cutaneous T cell lymphoma (CTCL). However, there is a need for further improvement of this therapeutic approach. Here, we compared the mode of action of romidepsin (FK228), an established class I histone deacetylase inhibitor, and domatinostat (4SC-202), a novel inhibitor of class I HDACs, which has been reported to also target the lysine-specific histone demethylase 1A (LSD1).
Methods
We performed MTS assays and flow cytometric analyses of propidium iodide or annexin V-stained cells to assess drug impact on cellular proliferation, cell cycle distribution, and survival. Histone acetylation and methylation as well as caspase activation was analyzed by immunoblot. Gene expression analysis was performed using NanosString technology. Knockdown and knockout of LSD1 was achieved with shRNA and CRISPR/Cas9, respectively, while the CRISPR/Cas9 synergistic activation mediator system was used to induce expression of endogenous HDACs and LSD1. Furthermore, time-lapse fluorescence microscopy and an in vitro tubulin polymerization assay were applied.
Results
While FK228 as well as 4SC-202 potently induced cell death in six different CTCL cell lines, only in the case of 4SC-202 death was preceded by an accumulation of cells in the G2/M phase of the cell cycle. Surprisingly, apoptosis and accumulation of cells with double DNA content occurred already at 4SC-202 concentrations hardly affecting histone acetylation and methylation, and provoking significantly less changes in gene expression compared to biologically equivalent doses of FK228. Indeed, we provide evidence that the 4SC-202-induced G2/M arrest in CTCL cells is independent of de novo transcription. Furthermore, neither enforced expression of HDAC1 nor knockdown or knockout of LSD1 affected the 4SC-202-induced effects. Since time-lapse microscopy revealed that 4SC-202 could affect mitotic spindle formation, we performed an in vitro tubulin polymerization assay revealing that 4SC-202 can directly inhibit microtubule formation.
Conclusions
We demonstrate that 4SC-202, a drug currently tested in clinical trials, effectively inhibits growth of CTCL cells. The anti-cancer cell activity of 4SC-202 is however not limited to LSD1-inhibition, modulation of histone modifications, and consecutive alteration of gene expression. Indeed, the compound is also a potent microtubule-destabilizing agent.
Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival
(2016)
Mg2+ regulates many physiological processes and signalling pathways. However, little is known about the mechanisms underlying the organismal balance of Mg2+. Capitalizing on a set of newly generated mouse models, we provide an integrated mechanistic model of the regulation of organismal Mg2+ balance during prenatal development and in adult mice by the ion channel TRPM6. We show that TRPM6 activity in the placenta and yolk sac is essential for embryonic development. In adult mice, TRPM6 is required in the intestine to maintain organismal Mg2+ balance, but is dispensable in the kidney. Trpm6 inactivation in adult mice leads to a shortened lifespan, growth deficit and metabolic alterations indicative of impaired energy balance. Dietary Mg2+ supplementation not only rescues all phenotypes displayed by Trpm6-deficient adult mice, but also may extend the lifespan of wildtype mice. Hence, maintenance of organismal Mg2+ balance by TRPM6 is crucial for prenatal development and survival to adulthood.
The embryonic vertebrate heart tube develops an atrioventricular canal that divides the atrial and ventricular chambers, forms atrioventricular conduction tissue and organizes valve development. Here we assess the transcriptional mechanism underlying this localized differentiation process. We show that atrioventricular canal-specific enhancers are GATA-binding site-dependent and act as switches that repress gene activity in the chambers. We find that atrioventricular canal-specific gene loci are enriched in H3K27ac, a marker of active enhancers, in atrioventricular canal tissue and depleted in H3K27ac in chamber tissue. In the atrioventricular canal, Gata4 activates the enhancers in synergy with Bmp2/Smad signalling, leading to H3K27 acetylation. In contrast, in chambers, Gata4 cooperates with pan-cardiac Hdac1 and Hdac2 and chamber-specific Hey1 and Hey2, leading to H3K27 deacetylation and repression. We conclude that atrioventricular canal-specific enhancers are platforms integrating cardiac transcription factors, broadly active histone modification enzymes and localized co-factors to drive atrioventricular canal-specific gene activity.
Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca2\(^{+}\)-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation". This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33. We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo. Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.
HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an Ebox motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.