Refine
Has Fulltext
- yes (17)
Is part of the Bibliography
- yes (17)
Year of publication
Document Type
- Journal article (17)
Language
- English (17)
Keywords
- Biochemie (9)
- ARIA (1)
- Apoptosis (1)
- BMP antagonist (1)
- BRIP1 gene (1)
- CARAT (1)
- Ca\(^{2+}\) signalling (1)
- Cancer genetics (1)
- Ceramide (1)
- DNA mediated gene transfer (1)
Institute
- Theodor-Boveri-Institut für Biowissenschaften (11)
- Institut für Humangenetik (2)
- Institut für Hygiene und Mikrobiologie (1)
- Institut für Klinische Epidemiologie und Biometrie (1)
- Institut für Organische Chemie (1)
- Institut für Virologie und Immunbiologie (1)
- Julius-von-Sachs-Institut für Biowissenschaften (1)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (1)
- Medizinische Klinik und Poliklinik I (1)
Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.
Bone Morphogenetic Proteins (BMPs) are secreted protein hormones that act as morphogens and exert essential roles during embryonic development of tissues and organs. Signaling by BMPs occurs via hetero-oligomerization of two types of serine/threonine kinase transmembrane receptors. Due to the small number of available receptors for a large number of BMP ligands ligand-receptor promiscuity presents an evident problem requiring additional regulatory mechanisms for ligand-specific signaling. Such additional regulation is achieved through a plethora of extracellular antagonists, among them members of the Chordin superfamily, that modulate BMP signaling activity by binding. The key-element in Chordin-related antagonists for interacting with BMPs is the von Willebrand type C (VWC) module, which is a small domain of about 50 to 60 residues occurring in many different proteins. Although a structure of the VWC domain of the Chordin-member Crossveinless 2 (CV2) bound to BMP-2 has been determined by X-ray crystallography, the molecular mechanism by which the VWC domain binds BMPs has remained unclear. Here we present the NMR structure of the Danio rerio CV2 VWC1 domain in its unbound state showing that the key features for high affinity binding to BMP-2 is a pre-oriented peptide loop.
Background
Pemphigus is a severe bullous autoimmune skin disease. Pemphigus foliaceus (PF) is characterized by antidesmoglein (Dsg) 1 IgG causing epidermal blistering; mucosal pemphigus vulgaris (mPV) by anti‐Dsg3 IgG inducing erosions in the mucosa; and mucocutaneous pemphigus vulgaris (PV) by affecting both, with autoantibodies targeting Dsg1 and Dsg3.
Objectives
To characterize the Ca\(^{2+}\) flux pathway and delineate its importance in pemphigus pathogenesis and clinical phenotypes caused by different antibody profiles.
Methods
Immunoprecipitation, Ca\(^{2+}\) flux analysis, Western blotting, immunofluorescence staining, dissociation assays and a human skin ex vivo model were used.
Results
PV IgG and PF IgG, but neither Dsg3‐specific monoclonal antibody (AK23) nor mPV IgG, caused Ca\(^{2+}\) influx in primary human keratinocytes. Phosphatidylinositol 4‐kinase α interacts with Dsg1 but not with Dsg3. Its downstream target – phospholipase‐C‐γ1 (PLC) – was activated by PV IgG and PF IgG but not AK23 or mPV IgG. PLC releases inositol 1,4,5‐trisphosphate (IP3) causing IP3 receptor (IP3R) activation and Ca2+ flux from the endoplasmic reticulum into the cytosol, which stimulates Ca2+ release‐activated channels (CRAC)‐mediated Ca\(^{2+}\) influx. Inhibitors against PLC, IP3R and CRAC effectively blocked PV IgG and PF IgG‐induced Ca\(^{2+}\) influx; ameliorated alterations of Dsg1 and Dsg3 localization, and reorganization of keratin and actin filaments; and inhibited loss of cell adhesion in vitro. Finally, inhibiting PLC or IP3R was protective against PV IgG‐induced blister formation and redistribution of Dsg1 and Dsg3 in human skin ex vivo.
Conclusions
Ca2+‐mediated signalling is important for epidermal blistering and dependent on the autoantibody profile, which indicates different roles for signalling complexes organized by Dsg1 and Dsg3. Interfering with PLC and Ca\(^{2+}\) signalling may be a promising approach to treat epidermal manifestations of pemphigus.
Processing peptidase of Neurospora mitochondria. Two-step cleavage of imported ATPase subunit 9
(1984)
Subunit 9 (dicyclohexylcarbodümide binding protein, 'proteolipid') of the mitochondrial F 1F0-ATPase is a nuclearly coded protein in Neurospora crassa. lt is synthesized on free cytoplasmic ribosomes as a larger precursor with an NH2-terminal peptide extension. The peptide extension is cleaved ofT after transport of the protein into the mitochondria. A processing activity referred to as processing peptidase that cleaves the precursor to subunit 9 and other mitochondrial proteins is described and characterized using a cell-free system. Precursor synthesized in vitro was incubated with extracts of mitochondria. Processing peptidase required Mn2 + for its activity. Localization studies suggested that it is a soluble component of the mitochondrial matrix. The precursor was cleaved in two sequential steps via an intermediate-sized polypeptide. The intermediate form in the processing of subunit 9 was also seen in vivo and upon import of the precursor into isolated mitochondria in vitro. The two dcavage sites in the precursor molecule were determined. The data indicate that: {a) the correct NH2-terminus of the mature protein was generated, (b) the NH2-terminal amino acid of the intermediate-sized polypeptide is isoleueine in position -31. The cleavage sites show similarity ofprimary structure. It is concluded that processing peptidase removes the peptide extension from the precursor to subunit 9 (and probably other precursors) after translocation of these polypeptides (or the NHrterminal part of these polypeptides) into the matrix space of mitochondria.
The gene for the FeS protein of the Rhodopseudomonas sphaeroides b/c1 complex was identified by means of crosshybridization with a segment of the gene encoding the corresponding FeS protein of Neurospora crassa. Plasmids (pRSF1-14) containing the cross-hybridizing region, covering in total 13.5 kb of chromosomal DNA, were expressed in vitro in a homologous system. One RSF plasmid directed the synthesis of all three main polypeptides of the R. sphaeroides blc1 complex: the FeS protein, cytochrome b and cytochrome c1• The FeS protein and cytochrome c1 were apparently synthesized as precursor fonns. None of the pRSF plasmids directed the synthesis of the 10-kd polypeptide found in b/c1 complex preparations. Partial sequencing of the cloned region was performed. Several sites of strong homology between R. sphaeroides and eukaryotic polypeptides of the b/c1 complex were identified. The genes encode the three b/c1 polypeptides in the order: (5') FeS protein, cytochrome b, cytochrome c1• The three genes are transcribed to give a polycistronic mRNA of 2.9 kb. This transcriptional unit has been designated the jbc operon; its coding capacity corresponds to the size of the polycistronic mRNA assuming that only the genes for the FeS protein (jbcF), cytochrome b (jbcß) and cytochrome c1 (jbcC) are present. This could indicate that these three subunits constitute the minimal catalytic unit of the b/c1 complex from photosynthetic membranes.
The c, b and ö subunit genes of the Escherichia coli atp operon were cloned individually in an expression vector between the tac fusion promoter and the galK gene. The relative rates of subunit synthesis directed by the cloned genes were similar in vitro andin vivo and compared favourably with the subunit stoichiometry of the assembled proton-translocating A TP synthase of E. coli in vivo. The rate of synthesis of subunit c was at least six times that of subunit b and 18 times that of subunit ö. Progressive shortening of the long intercistronic sequence lying upstream of the subunit c gene showed that maximal expression of this gene is dependent upon the presence of a sequence stretching > 20 bp upstream of the Shine-Dalgarno site. This sequence thus acts to enhance the rate of translational initiation. The possibility that similar sequences might perform the same function in other operons of E. coli and bacteriophage A is also discussed. Translation of the subunit b cistron is partially coupled to translation of the preceding subunit c cistron. In conclusion, the expression of all the atp operon genes could be adjusted to accommodate the subunit requirements of A TP synthase assembly primarily by means of mechanisms which control the efficiency of translational initiation and re-initiation at the respective cistron start codons.
Isolation of a functional human interleukin 2 gene from a cosmid library by recombination in vivo
(1985)
A method has been developed that allows the isolation of genomic clones from a cosmid library by homologaus recombination in vivo. This method was used to isolate a human genomic interleukin 2 (IL2) gene. The genomic cosmid library was packaged in vivo into A. phage particles. A recombination-proficient host strain carrying IL2 cDNA sequences in a non-homologaus plasmid vector was infected by the packaged cosmid library. After in vivo packaging and reinfection, recombinants carrying the antibiotic resistance genes of both vectors were selected. From a recombinant cosmid clone the chromosomal IL2 genewas restored. After DNA mediated gene transfer into mouse Ltk- cells human IL2 was expressed constitutively.