Refine
Has Fulltext
- yes (5)
Is part of the Bibliography
- yes (5)
Document Type
- Journal article (4)
- Doctoral Thesis (1)
Language
- English (5)
Keywords
- boranes (2)
- cell imaging (2)
- fluorescence (2)
- lysosome (2)
- two-photon excited fluorescence (2)
- Fluoreszenzspektrometer (1)
- NIR OLED (1)
- Non-linear optics (1)
- Nonlinear Optical Properties of Organic Materials (1)
- Spectroscopy (1)
Institute
Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two‐photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two‐photon excited fluorescence (TPEF) live‐cell imaging.
Stereospecific Synthesis and Photophysical Properties of Propeller-Shaped C\(_{90}\)H\(_{48}\) PAH
(2019)
Herein, we have synthesized an enantiomerically pure propeller‐shaped PAH, C\(_{90}\)H\(_{48}\), possessing three [7]helicene and three [5]helicene subunits. This compound can be obtained in gram quantities in a straightforward manner. The photophysical and chiroptical properties were investigated using UV/Vis absorption and emission, optical rotation and circular dichroism spectroscopy, supported by DFT calculations. The nonlinear optical properties were investigated by two‐photon absorption measurements using linearly and circularly polarized light. The extremely twisted structure and packing of the homochiral compound were investigated by single‐crystal X‐ray diffraction analysis.
Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6‐dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed‐shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two‐photon absorption spectroscopy and OLED devices.
Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two‐photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two‐photon excited fluorescence (TPEF) live‐cell imaging.
Main objectives of the present dissertation can be divided in two parts. The first part deals with setting up a spectroscopic technique for reliable and accurate measurements of the two-photon absorption (2PA) cross section spectra. In the second part, this firmly established experimental technique together with conventional spectroscopic characterization, quantum-chemical computations and theoretical modelling calculations was combined and therefore used as a tool to gain information for the so-called structure-property relationship through several molecular compounds.