Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Year of publication
- 2012 (2)
Document Type
- Journal article (2)
Language
- English (2)
Keywords
- MRI (1)
- cystic fibrosis (1)
- functional imaging (1)
- infiltrate (1)
- lung (1)
- magnetic resonance imaging (1)
- proton (1)
- pulmonary embolism (1)
- tumor (1)
Proton magnetic resonance imaging (MRI) has recently emerged as a clinical tool to image the lungs. This paper outlines the current technical aspects of MRI pulse sequences, radiofrequency (RF) coils and MRI system requirements needed for imaging the pulmonary parenchyma and vasculature. Lung MRI techniques are presented as a “technical toolkit”, from which MR protocols will be composed in the subsequent papers for comprehensive imaging of lung disease and function (parts 2 and 3). This paper is pitched at MR scientists, technicians and radiologists who are interested in understanding and establishing lung MRI methods. Images from a 1.5 T scanner are used for illustration of the sequences and methods that are highlighted.
Main Messages
• Outline of the hardware and pulse sequence requirements for proton lung MRI
• Overview of pulse sequences for lung parenchyma, vascular and functional imaging with protons
• Demonstration of the pulse-sequence building blocks for clinical lung MRI protocols
Background
MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women.
Methods
Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value.
Results
In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a “buffet” of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice.
Conclusion
New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed.
Main Messages
• MRI evolves as a third lung imaging modality, combining morphological and functional information.
• It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients.
• In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT.
• In interstitial lung disease, it serves for research, but the clinical value remains to be proven.
• New users are advised to make themselves familiar with the particular advantages and limitations.