Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (2)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (4)
Keywords
Institute
Sonstige beteiligte Institutionen
Energy Transfer Between Squaraine Polymer Sections: From helix to zig-zag and All the Way Back
(2015)
Joint experimental and theoretical study of the absorption spectra of squaraine polymers in solution provide evidence that two different conformations are present in solution: a helix and a zig-zag structure. This unique situation allows investigating ultrafast energy transfer processes between different structural segments within a single polymer chain in solution. The understanding of the underlying dynamics is of fundamental importance for the development of novel materials for light-harvesting and optoelectronic applications. We combine here femtosecond transient absorption spectroscopy with time-resolved 2D electronic spectroscopy showing that ultrafast energy transfer within the squaraine polymer chains proceeds from initially excited helix segments to zig-zag segments or vice versa, depending on the solvent as well as on the excitation wavenumber. These observations contrast other conjugated polymers such as MEH-PPV where much slower intrachain energy transfer was reported. The reason for the very fast energy transfer in squaraine polymers is most likely a close matching of the density of states between donor and acceptor polymer segments because of very small reorganization energy in these cyanine-like chromophores.
Time-resolved spectroscopy allows for analyzing light-induced energy conversion and
chromophore–chromophore interactions in molecular systems, which is a prerequisite in
the design of new materials and for improving the efficiency of opto-electronic devices.
To elucidate photo-induced dynamics of complex molecular systems, transient absorption
(TA) and coherent two-dimensional (2D) spectroscopy were employed and combined
with additional experimental techniques, theoretical approaches, and simulation models
in this work.
A systematic series of merocyanines, synthetically varied in the number of chromophores
and subsitution pattern, attached to a benzene unit was investigated in cooperation with
the group of Prof. Dr. Frank Würthner at the University of Würzburg. The global analysis
of several TA experiments, and additional coherent 2D spectroscopy experiments, provided
the basis to elaborate a relaxation scheme which was applicable for all merocyanine
systems under investigation. This relaxation scheme is based on a double minimum on the
excited-state potential energy surface. One of these minima is assigned to an intramolecular
charge-transfer state which is stabilized in the bis- and tris-chromophoric dyes by
chromphore–chromophore interactions, resulting in an increase in excited-state lifetime.
Electro-optical absorption and density functional theory (DFT) calculations revealed a
preferential chromophore orientation which compensates most of the dipole moment of
the individual chromophores. Based on this structural assignment the conformationdependent
exciton energy splitting was calculated. The linear absorption spectra of the
multi-chromophoric merocyanines could be described by a combination of monomeric and
excitonic spectra.
Subsequently, a structurally complex polymeric squaraine dye was studied in collaboration
with the research groups of Prof. Dr. Christoph Lambert and Prof. Dr. Roland Mitric
at the University of Würzburg. This polymer consists of a superposition of zigzag and
helix structures depending on the solvent. High-level DFT calculations confirmed the previous
assignment that zigzag and helix structures can be treated as J- and H-aggregates,
respectively. TA experiments revealed that in dependence on the solvent as well as the
excitation energy, ultrafast energy transfer within the squaraine polymer proceeds from
initially excited helix segments to zigzag segments or vice versa. Additionally, 2D spectroscopy
confirmed the observed sub-picosecond dynamics. In contrast to other conjugated
polymers such as MEH-PPV, which is investigated in the last chapter, ultrafast
energy transfer in squaraine polymers is based on the matching of the density of states
between donor and acceptor segments due to the small reorganization energy in cyanine-like
chromophores.
Finally, the photo-induced dynamics of the aggregated phase of the conjugated polymer
MEH-PPV was investigated in cooperation with the group of Prof. Dr. Anna Köhler at the University of Bayreuth. Our collaborators had previously described the aggregation of MEH-PPV upon cooling by the formation of so-called HJ-aggregates based on exciton
theory. By TA measurements and by making use of an affiliated band analysis distinct
relaxation processes in the excited state and to the ground state were discriminated. By
employing 2D spectroscopy the energy transfer between different conjugated segments
within the aggregated polymer was resolved. The initial exciton relaxation within the
aggregated phase indicates a low exciton mobility, in contrast to the subsequent energy
transfer between different chromophores within several picoseconds.
This work contributes by its systematic study of structure-dependent relaxation dynamics
to the basic understanding of the structure-function relationship within complex
molecular systems. The investigated molecular classes display a high potential to increase
efficiencies of opto-electronic devices, e.g., organic solar cells, by the selective choice of
the molecular morphology.
Coherent two-dimensional electronic spectroscopy in the Soret band of a chiral porphyrin dimer
(2013)
Using coherent two-dimensional (2D) electronic spectroscopy in fully noncollinear geometry, we observe the excitonic coupling of β,β'-linked bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited state. The results for two states in the Soret band originating from an excitonic splitting are explained by population transfer with approximately 100 fs from the energetically higher to the lower excitonic state. This interpretation is consistent with exemplary calculations of 2D spectra for a model four-level system with coupling.
Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present.