Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (4)
Language
- English (4)
Keywords
- adolescents (2)
- children (2)
- Ramadan (1)
- adolescent (1)
- aerobic fitness (1)
- athletes (1)
- compensation (1)
- displacement (1)
- energy intake (1)
- exercise intervention (1)
Institute
Objectives
To assess the impact of HIIT performed at school, i.e. both in connection with physical education (intra-PE) and extracurricular sports activities (extra-PE), on the physical fitness and health of children and adolescents.
Methods
PubMed and SPORTDiscus were searched systematically utilizing the following criteria for inclusion: (1) healthy children and adolescents (5–18 years old) of normal weight; (2) HIIT performed intra- and/or extra-PE for at least 5 days at an intensity ≥ 80% of maximal heart rate (HR\(_{max}\)) or peak oxygen uptake (VO\(_{2peak}\)) or as Functional HIIT; (3) comparison with a control (HIIT versus alternative interventions); and (4) pre- and post-analysis of parameters related to physical fitness and health. The outcomes with HIIT and the control interventions were compared utilizing Hedges’ g effect size (ES) and associated 95% confidence intervals.
Results
Eleven studies involving 707 participants who performed intra-PE and 388 participants extra-PE HIIT were included. In comparison with the control interventions, intra-PE HIIT improved mean ES for neuromuscular and anaerobic performance (ES jump performance: 5.89 ± 5.67 (range 1.88–9.90); ES number of push-ups: 6.22 (range n.a.); ES number of sit-ups: 2.66 ± 2.02 (range 1.24–4.09)), as well as ES fasting glucose levels (− 2.68 (range n.a.)) more effectively, with large effect sizes. Extra-PE HIIT improved mean ES for neuromuscular and anaerobic performance (ES jump performance: 1.81 (range n.a.); ES number of sit-ups: 2.60 (range n.a.)) to an even greater extent, again with large effect sizes. Neither form of HIIT was more beneficial for parameters related to cardiorespiratory fitness than the control interventions.
Conclusion
Compared to other forms of exercise (e.g. low-to-moderate-intensity running or walking), both intra- and extra-PE HIIT result in greater improvements in neuromuscular and anaerobic performance, as well as in fasting levels of glucose in school children.
Regular physical activity during childhood and adolescence is associated with health benefits. Consequently, numerous health promotion programs for children and adolescents emphasize the enhancement of physical activity. However, the ActivityStat hypothesis states that increases in physical activity in one domain are compensated for by decreasing physical activity in another domain. Currently, little is known about how physical activity varies in children and adolescents within intervals of one day or multiple days. This systematic review provides an overview of studies that analyzed changes in (overall) physical activity, which were assessed with objective measurements, or compensatory mechanisms caused by increases or decreases in physical activity in a specific domain in children and adolescents. A systematic search of electronic databases (PubMed, Scopus, Web of Science, SportDiscus) was performed with a priori defined inclusion criteria. Two independent researchers screened the literature and identified and rated the methodological quality of the studies. A total of 77 peer-reviewed articles were included that analyzed changes in overall physical activity with multiple methodological approaches resulting in compensation or displacement. Of 40,829 participants, 16,265 indicated compensation associated with physical activity. Subgroup analyses separated by study design, participants, measurement instrument, physical activity context, and intervention duration also showed mixed results toward an indication of compensation. Quality assessment of the included studies revealed that they were of high quality (mean = 0.866). This review provides inconclusive results about compensation in relation to physical activity. A trend toward increased compensation in interventional studies and in interventions of longer duration have been observed.
The present study assessed the short-term effect of 6 min classroom-based micro-sessions of multi-joint functional high-intensity circuit training (FunctionalHIIT) performed by students during regular classes on parameters related to functional strength and cardiorespiratory fitness. In this randomized controlled 4-week study, 17 students (11 male; 6 female; age: 11.6 ± 0.2 years) performed 6 min of FunctionalHIIT (targeting >17 on the Borg scale) 4 days per week during regular school classes and 18 students (11 male; 7 female; age: 11.7 ± 0.3 years) served as control group (CG) without any additional in-class physical activity. The FunctionalHIIT group completed 86% of all planned sessions (mean duration: 6.0 ± 1.5 min) with a mean RPE of 17.3 ± 2.1. Body height, mass and BMI did not differ between the groups at baseline or between pre- and post-testing (p > 0.05; eta2 ≤ 0.218). The performances in lateral jumping (p < 0.000; part eta2 = 0.382; Δ% 4.6 ± 8.6), sit-ups (p < 0.000; part eta2 = 0.485; Δ% 3.1 ± 8.6) and 20-m sprints (p < 0.000; part eta2 = 0.691; Δ% 15.8 ± 5.4) improved in both groups with greater increase following FunctionalHIIT. No baseline differences and no interaction effects occurred in performance of 6 min run, flexibility, push-ups, balance, and long jump. Classroom-based FunctionalHIIT sessions, performed 4 days per week during 4 weeks did not improve variables related to aerobic endurance performance but enhanced certain parameters of functional strength in schoolchildren. As time is limited in the educational system of schools, FunctionalHIIT during regular school classes could offer a new perspective for increasing functional strength in schoolchildren.
To evaluate the effects of Ramadan observance on dietary intake, body mass and body composition of adolescent athletes (design: systematic review and meta-analysis; data sources: PubMed and Web of Science; eligibility criteria for selecting studies: single-group, pre-post, with or without control-group studies, conducted in athletes aged <19 years, training at least 3 times/week, and published in any language before 12 February 2020). Studies assessing body mass and/or body composition and/or dietary intake were deemed eligible. The methodological quality was assessed using ‘QualSyst’. Of the twelve selected articles evaluating body mass and/or body composition, one was of strong quality and eleven were rated as moderate. Ten articles evaluated dietary intake; four were rated as strong and the remaining moderate in quality. Continuation of training during Ramadan did not change body mass from before to the first week (trivial effect size (ES) = −0.011, p = 0.899) or from before to the fourth week of Ramadan (trivial ES = 0.069, p = 0.277). Additionally, Ramadan observance did not change body fat content from before to the first week (trivial ES = −0.005, p = 0.947) and from before to the fourth week of Ramadan (trivial ES = -0.057, p = 0.947). Lean body mass remained unchanged from before to the fourth week of Ramadan (trivial ES = −0.025, p = 0.876). Dietary data showed the intake of energy (small ES = -0.272, p = 0.182), fat (trivial ES = 0.044, p = 0.842), protein (trivial ES = 0.069, p = 0.720), carbohydrate (trivial ES = 0.075, p = 0.606) and water (trivial ES = −0.115, p = 0.624) remained essentially unchanged during as compared to before Ramadan. Continued training of adolescent athletes at least three times/week during Ramadan observance has no effect on body mass, body composition or dietary intake.