Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Journal article (3)
- Doctoral Thesis (1)
Language
- English (4)
Keywords
Institute
Performance Assessment of Resource Management Strategies for Cellular and Wireless Mesh Networks
(2015)
The rapid growth in the field of communication networks has been truly amazing in the last decades. We are currently experiencing a continuation thereof with an increase in traffic and the emergence of new fields of application. In particular, the latter is interesting since due to advances in the networks and new devices, such as smartphones, tablet PCs, and all kinds of Internet-connected devices, new additional applications arise from different areas. What applies for all these services is that they come from very different directions and belong to different user groups. This results in a very heterogeneous application mix with different requirements and needs on the access networks.
The applications within these networks typically use the network technology as a matter of course, and expect that it works in all situations and for all sorts of purposes without any further intervention. Mobile TV, for example, assumes that the cellular networks support the streaming of video data. Likewise, mobile-connected electricity meters rely on the timely transmission of accounting data for electricity billing. From the perspective of the communication networks, this requires not only the technical realization for the individual case, but a broad consideration of all circumstances and all requirements of special devices and applications of the users.
Such a comprehensive consideration of all eventualities can only be achieved by a dynamic, customized, and intelligent management of the transmission resources. This management requires to exploit the theoretical capacity as much as possible while also taking system and network architecture as well as user and application demands into account. Hence, for a high level of customer satisfaction, all requirements of the customers and the applications need to be considered, which requires a multi-faceted resource management.
The prerequisite for supporting all devices and applications is consequently a holistic resource management at different levels. At the physical level, the technical possibilities provided by different access technologies, e.g., more transmission antennas, modulation and coding of data, possible cooperation between network elements, etc., need to be exploited on the one hand. On the other hand, interference and changing network conditions have to be counteracted at physical level. On the application and user level, the focus should be on the customer demands due to the currently increasing amount of different devices and diverse applications (medical, hobby, entertainment, business, civil protection, etc.).
The intention of this thesis is the development, investigation, and evaluation of a holistic resource management with respect to new application use cases and requirements for the networks. Therefore, different communication layers are investigated and corresponding approaches are developed using simulative methods as well as practical emulation in testbeds. The new approaches are designed with respect to different complexity and implementation levels in order to cover the design space of resource management in a systematic way. Since the approaches cannot be evaluated generally for all types of access networks, network-specific use cases and evaluations are finally carried out in addition to the conceptual design and the modeling of the scenario.
The first part is concerned with management of resources at physical layer. We study distributed resource allocation approaches under different settings. Due to the ambiguous performance objectives, a high spectrum reuse is conducted in current cellular networks. This results in possible interference between cells that transmit on the same frequencies. The focus is on the identification of approaches that are able to mitigate such interference.
Due to the heterogeneity of the applications in the networks, increasingly different application-specific requirements are experienced by the networks. Consequently, the focus is shifted in the second part from optimization of network parameters to consideration and integration of the application and user needs by adjusting network parameters. Therefore, application-aware resource management is introduced to enable efficient and customized access networks.
As indicated before, approaches cannot be evaluated generally for all types of access networks. Consequently, the third contribution is the definition and realization of the application-aware paradigm in different access networks. First, we address multi-hop wireless mesh networks. Finally, we focus with the fourth contribution on cellular networks. Application-aware resource management is applied here to the air interface between user device and the base station. Especially in cellular networks, the intensive cost-driven competition among the different operators facilitates the usage of such a resource management to provide cost-efficient and customized networks with respect to the running applications.
Uplink vs. Downlink: Machine Learning-Based Quality Prediction for HTTP Adaptive Video Streaming
(2021)
Streaming video is responsible for the bulk of Internet traffic these days. For this reason, Internet providers and network operators try to make predictions and assessments about the streaming quality for an end user. Current monitoring solutions are based on a variety of different machine learning approaches. The challenge for providers and operators nowadays is that existing approaches require large amounts of data. In this work, the most relevant quality of experience metrics, i.e., the initial playback delay, the video streaming quality, video quality changes, and video rebuffering events, are examined using a voluminous data set of more than 13,000 YouTube video streaming runs that were collected with the native YouTube mobile app. Three Machine Learning models are developed and compared to estimate playback behavior based on uplink request information. The main focus has been on developing a lightweight approach using as few features and as little data as possible, while maintaining state-of-the-art performance.
Crowdsourced network measurements (CNMs) are becoming increasingly popular as they assess the performance of a mobile network from the end user's perspective on a large scale. Here, network measurements are performed directly on the end-users' devices, thus taking advantage of the real-world conditions end-users encounter. However, this type of uncontrolled measurement raises questions about its validity and reliability. The problem lies in the nature of this type of data collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement process, and collect data themselves for the operator. The collection of data on user devices in arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs; specifically, the number of measurements required to make valid statements. In addition to the formal definition of the aspect, we illustrate the problem and use an extensive sample data set to show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced mobile measurements from across France, measured by a commercial data provider.
Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3 G/4 G traces, and 4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video rebuffering events, and streaming phases.