Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (3)
Language
- English (3)
Keywords
- Alpha-galactosidase (1)
- Chronic kidney disease (1)
- Chronic kidney-disease (1)
- Clinical proteomics (1)
- Discovery (1)
- Fabry disease (1)
- Fabry nephropathy (1)
- Fabry patient (1)
- Globotriaosylceramide (1)
- Hemodialysis-patients (1)
Background: Impairments of health related quality of life (HRQoL) are frequently observed in Fabry disease (FD) and are known to be related to neuropathic pain and cardiovascular events. This study aimed to explore the role of chronic kidney disease (CKD) in a large cohort of patients with FD.
Methods: In 96 patients (53% female; age 40 ± 12 yrs) with genetically proven FD, HRQoL was assessed by the Medical Outcomes Study (SF-36) questionnaire. All patients were naïve to enzyme replacement therapy. Three categories for kidney dysfunction were chosen, eGFR ≥/<60 ml/min/1.73 m2 or need of renal replacement therapy (RRT). Minor (e.g. arrhythmia, angina pectoris, etc.) and major (e.g. myocardial infarction, coronary artery bypass, stroke or implantable cardioverter-defibrillator) vascular events as well as pain and pain therapy were considered in linear regression analyses with the dimensions of HRQoL.
Results: Ten patients (10%) had impaired kidney function and a further nine were on RRT (9.4%). Kidney function and pain emerged as the main factors associated with lower scores on the SF 36, in particular on physical components (PCS beta-coefficients for CKD −6.2, for RRT −11.8, for pain −9.1, p < 0.05, respectively), while controlling for gender, vascular event and pain-therapy. Relationships were found for mental aspects of HRQoL. Age and history of vascular events were not related to HRQoL.
Conclusion: Cardiovascular events and pain are important factors related to HRQoL, social functioning and depression. Our study highlights impaired chronic kidney disease, in particular after initiation of RRT, as a strong determinant of reduced HRQoL in FD.
Patients with Fabry disease frequently develop left ventricular (LV) hypertrophy and renal fibrosis. Due to heat intolerance and an inability to sweat, patients tend to avoid exposure to sunlight. We hypothesized that subsequent vitamin D deficiency may contribute to Fabry cardiomyopathy. This study investigated the vitamin D status and its association with LV mass and adverse clinical symptoms in patients with Fabry disease. 25-hydroxyvitamin D (25[OH]D) was measured in 111 patients who were genetically proven to have Fabry disease. LV mass and cardiomyopathy were assessed by magnetic resonance imaging and echocardiography. In cross-sectional analyses, associations with adverse clinical outcomes were determined by linear and binary logistic regression analyses, respectively, and were adjusted for age, sex, BMI and season. Patients had a mean age of 40 ± 13 years (42 % males), and a mean 25(OH)D of 23.5 ± 11.4 ng/ml. Those with overt vitamin D deficiency (25[OH]D ≤ 15 ng/ml) had an adjusted six fold higher risk of cardiomyopathy, compared to those with sufficient 25(OH)D levels >30 ng/ml (p = 0.04). The mean LV mass was distinctively different with 170 ± 75 g in deficient, 154 ± 60 g in moderately deficient and 128 ± 58 g in vitamin D sufficient patients (p = 0.01). With increasing severity of vitamin D deficiency, the median levels of proteinuria increased, as well as the prevalences of depression, edema, cornea verticillata and the need for medical pain therapy. In conclusion, vitamin D deficiency was strongly associated with cardiomyopathy and adverse clinical symptoms in patients with Fabry disease. Whether vitamin D supplementation improves complications of Fabry disease, requires a randomized controlled trial.
Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naive female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naive Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy.