Refine
Has Fulltext
- yes (44)
Is part of the Bibliography
- yes (44)
Year of publication
Document Type
- Journal article (43)
- Preprint (1)
Language
- English (44)
Keywords
- water oxidation (6)
- dyes (5)
- fluorescence (4)
- self-assembly (4)
- aggregation (3)
- catalysis (3)
- dyes/pigments (3)
- exciton coupling (3)
- organic chemistry (3)
- organic photodiodes (3)
Institute
A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications.
A bis(squaraine) dye equipped with alkyl and oligoethyleneglycol chains was synthesized by connecting two dicyanomethylene substituted squaraine dyes with a phenylene spacer unit. The aggregation behavior of this bis(squaraine) was investigated in non-polar toluene/tetrachloroethane (98:2) solvent mixture, which revealed competing cooperative self-assembly pathways into two supramolecular polymorphs with entirely different packing structures and UV/Vis/NIR absorption properties. The self-assembly pathway can be controlled by the cooling rate from a heated solution of the monomers. For both polymorphs, quasi-equilibrium conditions between monomers and the respective aggregates can be established to derive thermodynamic parameters and insights into the self-assembly mechanisms. AFM measurements revealed a nanosheet structure with a height of 2 nm for the thermodynamically more stable polymorph and a tubular nanorod structure with a helical pitch of 13 nm and a diameter of 5 nm for the kinetically favored polymorph. Together with wide angle X-ray scattering measurements, packing models were derived: the thermodynamic polymorph consists of brick-work type nanosheets that exhibit red-shifted absorption bands as typical for J-aggregates, while the nanorod polymorph consists of eight supramolecular polymer strands of the bis(squaraine) intertwined to form a chimney-type tubular structure. The absorption of this aggregate covers a large spectral range from 550 to 875 nm, which cannot be rationalized by the conventional exciton theory. By applying the Essential States Model and considering intermolecular charge transfer, the aggregate spectrum was adequately reproduced, revealing that the broad absorption spectrum is due to pronounced donor-acceptor overlap within the bis(squaraine) nanorods. The latter is also responsible for the pronounced bathochromic shift observed for the nanosheet structure as a result of the slip-stacked arranged squaraine chromophores.
Dye–dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near‐infrared region and the latter an ultra‐narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip‐stacked dyes, distinguishing classical J‐aggregates with predominant long‐range Coulomb coupling from charge transfer (CT)‐mediated or ‐coupled J‐aggregates, whose red‐shifts are primarily governed by short‐range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength‐selective OPDs, providing important insights into the rational design of thin‐film optoelectronic materials.
A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self‐assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen‐bond‐directed self‐assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid‐crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo‐ or heterochiral self‐assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self‐sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self‐assemblies proceeds by dissociation via the monomeric state.
A bis(trialkoxybenzamide)-functionalized quaterthiophene derivative was synthesized and its self-assembly properties in solution were studied. In non-polar solvents such as cyclohexane, this quaterthiophene π-system formed fibril aggregates with an H-type molecular arrangement due to synergistic effect of hydrogen bonding and π-stacking. The self-assembled fibres were found to gelate numerous organic solvents of diverse polarity. The charge transport ability of such elongated fibres of quaterthiophene π-system was explored by the pulse radiolysis time resolved microwave conductivity (PR-TRMC) technique and moderate mobility values were obtained. Furthermore, initial AFM and UV-vis spectroscopic studies of a mixture of our electron-rich quaterthiophene derivative with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) revealed a nanoscale segregated assembly of the individual building blocks in the blend.
Homo- and heterochiral aggregation during crystallization of organic molecules has significance both for fundamental questions related to the origin of life as well as for the separation of homochiral compounds from their racemates in industrial processes. Herein, we analyse these phenomena at the lowest level of hierarchy - that is the self-assembly of a racemic mixture of (R,R)- and (S,S)-PBI into 1D supramolecular polymers. By a combination of UV/vis and NMR spectroscopy as well as atomic force microscopy, we demonstrate that homochiral aggregation of the racemic mixture leads to the formation of two types of supramolecular conglomerates under kinetic control, while under thermodynamic control heterochiral aggregation is preferred, affording a racemic supramolecular polymer. FT-IR spectroscopy and quantum-chemical calculations reveal unique packing arrangements and hydrogen-bonding patterns within these supramolecular polymers. Time-, concentration- and temperature-dependent UV/vis experiments provide further insights into the kinetic and thermodynamic control of the conglomerate and racemic supramolecular polymer formation. Homo- and heterochiral aggregation is a process of interest to prebiotic and chiral separation chemistry. Here, the authors analyze the self-assembly of a racemic mixture into 1D supramolecular polymers and find homochiral aggregation into conglomerates under kinetic control, while under thermodynamic control a racemic polymer is formed.
A Calix[4]arene‐Based Cyclic Dinuclear Ruthenium Complex for Light‐Driven Catalytic Water Oxidation
(2021)
A cyclic dinuclear ruthenium(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) complex equipped with oligo(ethylene glycol)‐functionalized axial calix[4]arene ligands has been synthesized for homogenous catalytic water oxidation. This novel Ru(bda) macrocycle showed significantly increased catalytic activity in chemical and photocatalytic water oxidation compared to the archetype mononuclear reference [Ru(bda)(pic)\(_2\)]. Kinetic investigations, including kinetic isotope effect studies, disclosed a unimolecular water nucleophilic attack mechanism of this novel dinuclear water oxidation catalyst (WOC) under the involvement of the second coordination sphere. Photocatalytic water oxidation with this cyclic dinuclear Ru complex using [Ru(bpy)\(_3\)]Cl\(_2\) as a standard photosensitizer revealed a turnover frequency of 15.5 s\(^{−1}\) and a turnover number of 460. This so far highest photocatalytic performance reported for a Ru(bda) complex underlines the potential of this water‐soluble WOC for artificial photosynthesis.
Photocatalytic water oxidation is a promising process for the production of solar fuels and the elucidation of factors that influence this process is of high significance. Thus, we have studied in detail light‐driven water oxidation with a trinuclear Ru(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) macrocycle MC3 and its highly water soluble derivative m‐CH\(_2\)NMe\(_2\)‐MC3 using a series of ruthenium tris(bipyridine) complexes as photosensitizers under varied reaction conditions. Our investigations showed that the catalytic activities of these Ru macrocycles are significantly affected by the choice of photosensitizer (PS) and reaction media, in addition to buffer concentration, light intensity and concentration of the sensitizer. Our steady‐state and transient spectroscopic studies revealed that the photocatalytic performance of trinuclear Ru(bda) macrocycles is not limited by their intrinsic catalytic activities but rather by the efficiency of photogeneration of oxidant PS\(^+\) and its ability to act as an oxidizing agent to the catalysts as both are strongly dependent on the choice of photosensitizer and the amount of employed organic co‐solvent.
In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts.
Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites.