Refine
Has Fulltext
- yes (36)
Is part of the Bibliography
- yes (36)
Year of publication
Document Type
- Journal article (34)
- Doctoral Thesis (2)
Keywords
- osteoporosis (4)
- hypophosphatasia (3)
- mineralization (3)
- sarcopenia (3)
- HPP (2)
- LMHFV (2)
- Mesenchymal stem cells (2)
- Multiple myeloma (2)
- TNAP (2)
- back pain (2)
Institute
- Lehrstuhl für Orthopädie (34)
- Institut für Humangenetik (3)
- Kinderklinik und Poliklinik (3)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (3)
- Medizinische Klinik und Poliklinik II (3)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (1)
- Fakultät für Mathematik und Informatik (1)
- Graduate School of Life Sciences (1)
EU-Project number / Contract (GA) number
- 241719 (1)
- 242175 (1)
- 617989 (1)
- EU-1650-0006 (1)
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.
Hypophosphatasia (HPP) is a rare genetic disease with diverse symptoms and a heterogeneous severity of onset with underlying mutations in the ALPL gene encoding the ectoenzyme Tissue-nonspecific alkaline phosphatase (TNAP). Considering the establishment of zebrafish (Danio rerio) as a new model organism for HPP, the aim of the study was the spatial and temporal analysis of alpl expression in embryos and adult brains. Additionally, we determined functional consequences of Tnap inhibition on neural and skeletal development in zebrafish. We show that expression of alpl is present during embryonic stages and in adult neuronal tissues. Analyses of enzyme function reveal zones of pronounced Tnap-activity within the telencephalon and the mesencephalon. Treatment of zebrafish embryos with chemical Tnap inhibitors followed by axonal and cartilage/mineralized tissue staining imply functional consequences of Tnap deficiency on neuronal and skeletal development. Based on the results from neuronal and skeletal tissue analyses, which demonstrate an evolutionary conserved role of this enzyme, we consider zebrafish as a promising species for modeling HPP in order to discover new potential therapy strategies in the long-term.
Vitamin D deficiency is a global health concern that is estimated to afflict over one billion people globally. The major role of vitamin D is that of a regulator of calcium and phosphate metabolism, thus, being essential for proper bone mineralisation. Concomitantly, vitamin D is known to exert numerous extra-skeletal actions. For example, it has become evident that vitamin D has direct anti-proliferative, pro-differentiation and pro-apoptotic actions on cancer cells. Hence, vitamin D deficiency has been associated with increased cancer risk and worse prognosis in several malignancies. We have recently demonstrated that vitamin D deficiency promotes secondary cancer growth in bone. These findings were partly attributable to an increase in bone remodelling but also through direct effects of vitamin D on cancer cells. To date, very little is known about vitamin D status of patients with bone tumours in general. Thus, the objective of this study was to assess vitamin D status of patients with diverse bone tumours. Moreover, the aim was to elucidate whether or not there is an association between pre-diagnostic vitamin D status and tumour malignancy in patients with bone tumours.
In a multi-center analysis, 25(OH)D, PTH and calcium levels of 225 patients that presented with various bone tumours between 2017 and 2018 were assessed. Collectively, 76% of all patients had insufficient vitamin D levels with a total mean 25(OH)D level of 21.43 ng/ml (53.58 nmol/L). In particular, 52% (117/225) of patients were identified as vitamin D deficient and further 24% of patients (55/225) were vitamin D insufficient. Notably, patients diagnosed with malignant bone tumours had significantly lower 25(OH)D levels than patients diagnosed with benign bone tumours [19.3 vs. 22.75 ng/ml (48.25 vs. 56.86 nmol/L); p = 0.04).
In conclusion, we found a widespread and distressing rate of vitamin D deficiency and insufficiency in patients with bone tumours. However, especially for patients with bone tumours sufficient vitamin D levels seem to be of great importance. Thus, we believe that 25(OH)D status should routinely be monitored in these patients. Collectively, there should be an increased awareness for physicians to assess and if necessary correct vitamin D status of patients with bone tumours in general or of those at great risk of developing bone tumours.
Background
Hypophosphatasia (HPP) is a rare, inherited metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the tissue-nonspecific alkaline phosphatase TNAP (ORPHA 436). Its clinical presentation is highly heterogeneous with a remarkably wide-ranging severity. HPP affects patients of all ages. In children HPP-related musculoskeletal symptoms may mimic rheumatologic conditions and diagnosis is often difficult and delayed. To improve the understanding of HPP in children and in order to shorten the diagnostic time span in the future we studied the natural history of the disease in our large cohort of pediatric patients. This single centre retrospective chart review included longitudinal data from 50 patients with HPP diagnosed and followed at the University Children's Hospital Wuerzburg, Germany over the last 25 years.
Results
The cohort comprises 4 (8%) perinatal, 17 (34%) infantile and 29 (58%) childhood onset HPP patients. Two patients were deceased at the time of data collection. Diagnosis was based on available characteristic clinical symptoms (in 88%), low alkaline phosphatase (AP) activity (in 96%), accumulating substrates of AP (in 58%) and X-ray findings (in 48%). Genetic analysis was performed in 48 patients (31 compound heterozygous, 15 heterozygous, 2 homozygous mutations per patient), allowing investigations on genotype-phenotype correlations. Based on anamnestic data, median age at first clinical symptoms was 3.5 months (min. 0, max. 107), while median time to diagnosis was 13 months (min. 0, max. 103). Common symptoms included: impairment of motor skills (78%), impairment of mineralization (72%), premature loss of teeth (64%), musculoskeletal pain and craniosynostosis (each 64%) and failure to thrive (62%). Up to now 20 patients started medical treatment with Asfotase alfa.
Conclusions
Reported findings support the clinical perception of HPP being a chronic multi-systemic disease with often delayed diagnosis. Our natural history information provides detailed insights into the prevalence of different symptoms, which can help to improve and shorten diagnostics and thereby lead to an optimised medical care, especially with promising therapeutic options such as enzyme-replacement-therapy with Asfotase alfa in mind.
Introduction: Abdominal aortic aneurysm (AAA) is a pathological saccular enlargement most often of the infrarenal aorta. Eventual rupture is fatal, making preemptive surgical therapy upon a diameter threshold of >50mm the treatment of choice. The pathophysiology, especially the initial trigger aortic remodeling is still largely unknown. However, some characteristic features involved in aneurysm growth have been established, such as medial angiogenesis, low-grade inflammation, vascular smooth muscle cell (VSMC) phenotype switch, extracellular remodeling, altered hemodynamics and an eventual humoral immune answer. Currently, no medical treatment options are available. RNA therapeutics and drug repurposing offer new possibilities to overcome this shortage. Using such to target angiogenesis in the aneurysm wall and investigate their potential mechanisms is the aim of this thesis. Material and Methods: We test our hypothesis by targeting the long non-coding RNA H19 and re-use the anti-cancer drug Lenvatinib in two murine inducible AAA models and one preclinical large animal model in the LDLR-/- pig. Furthermore, a H19-/- mouse is included to verify the results. AAA and control samples from a human biobank along with a primary human cell culture are used to verify results ex vivo by qPCR, WesternBlot, live cell imaging, histo- and immunohistochemistry along with gene array analysis, RNA knockdown, pull-down- and promotor assays. Results: H19 is significantly upregulated in AAA mice models and its knockdown limited aneurysm growth. It is well known that H19 interacts with several transcription factors. We found that cytoplasmic interaction between H19 and hypoxia-inducible factor 1-alpha (HIF1α) increased apoptosis in cultured SMCs associated with sequential p53 stabilization. In contrast, the knockdown of H19 was associated with markedly decreased apoptotic cell rates. Our data underline that HIF1α was essential in mediating the pro-apoptotic effects of H19. Secondly, Lenvatinib was applied both systemically and locally by endovascular means in mice with an established AAA. The drug significantly halted aneurysm growth and array analysis revealed myosin heavy chain 11 (MYH11) as the most differentially regulated target. This was shown to be up regulated after Lenvatinib treatment of primary AAA smooth muscle cells suggesting a salvage mechanism to obtain a contractile phenotype based on gene expression and immunohistochemistry. The same results were shown upon a local endovascular Lenvatinib-coated balloon angioplasty in the established aneurysmatic lesion of a novel atherosclerotic LDLR-/- Yucatan minipig model. Decreased phosphorylation of extracellular-signal regulated kinases 1-2 (ERK1-2) is the downstream effect of Lenvatinib-specific blockage of the vascular endothelial growth factor receptor (VEGFR2). Conclusion: Taking into account the heterogeneity of the disease, inhibition of VSMC phenotype switch, extracellular remodeling and angiogenesis seem promising targets in some if not all AAA patients. Together with surveillance and surgical therapy, these new non-invasive treatment strategies would allow for a more personalized approach to treat this disease.
Dynamic resistance exercise (DRT) might be the most promising agent for fighting sarcopenia in older people. However, the positive effect of DRT on osteopenia/osteoporosis in men has still to be confirmed. To evaluate the effect of low‐volume/high‐intensity (HIT)‐DRT on bone mineral density (BMD) and skeletal muscle mass index (SMI) in men with osteosarcopenia, we initiated the Franconian Osteopenia and Sarcopenia Trial (FrOST). Forty‐three sedentary community‐dwelling older men (aged 73 to 91 years) with osteopenia/osteoporosis and SMI‐based sarcopenia were randomly assigned to a HIT‐RT exercise group (EG; n = 21) or a control group (CG; n = 22). HIT‐RT provided a progressive, periodized single‐set DRT on machines with high intensity, effort, and velocity twice a week, while CG maintained their lifestyle. Both groups were adequately supplemented with whey protein, vitamin D, and calcium. Primary study endpoint was integral lumbar spine (LS) BMD as determined by quantitative computed tomography. Core secondary study endpoint was SMI as determined by dual‐energy X‐ray absorptiometry. Additional study endpoints were BMD at the total hip and maximum isokinetic hip−/leg‐extensor strength (leg press). After 12 months of exercise, LS‐BMD was maintained in the EG and decreased significantly in the CG, resulting in significant between‐group differences (p < 0.001; standardized mean difference [SMD] = 0.90). In parallel, SMI increased significantly in the EG and decreased significantly in the CG (p < 0.001; SMD = 1.95). Total hip BMD changes did not differ significantly between the groups (p = 0.064; SMD = 0.65), whereas changes in maximum hip−/leg‐extensor strength were much more prominent (p < 0.001; SMD = 1.92) in the EG. Considering dropout (n = 2), attendance rate (95%), and unintended side effects/injuries (n = 0), we believe our HIT‐RT protocol to be feasible, attractive, and safe. In summary, we conclude that our combined low‐threshold HIT‐RT/protein/vitamin D/calcium intervention was feasible, safe, and effective for tackling sarcopenia and osteopenia/osteoporosis in older men with osteosarcopenia.
Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.
Objectives
The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration.
Methods
In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions.
Results
Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis.
Conclusion
These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery.
Objective
This study aimed to compare a state‐of‐the‐art bioelectrical impedance analysis (BIA) device with two‐point Dixon magnetic resonance imaging (MRI) for the quantification of visceral adipose tissue (VAT) as a health‐related risk factor.
Methods
A total of 63 male participants were measured using a 3‐T MRI scanner and a segmental, multifrequency BIA device. MRI generated fat fraction (FF) maps, in which VAT volume, total abdominal adipose tissue volume, and FF of visceral and total abdominal compartments were quantified. BIA estimated body fat mass and VAT area.
Results
Coefficients of determination between abdominal (r\(^{2}\) = 0.75) and visceral compartments (r\(^{2}\) = 0.78) were similar for both groups, but slopes differed by a factor of two. The ratio of visceral to total abdominal FF was increased in older men compared with younger men. This difference was not detected with BIA. MRI and BIA measurements of the total abdominal volume correlated moderately (r\(^{2}\) = 0.31‐0.56), and visceral measurements correlated poorly (r\(^{2}\) = 0.13‐0.44).
Conclusions
Visceral BIA measurements agreed better with MRI measurements of the total abdomen than of the visceral compartment, indicating that BIA visceral fat area assessment cannot differentiate adipose tissue between visceral and abdominal compartments in young and older participants.
Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.