Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Journal article (3)
Keywords
- muscarinic antagonists (2)
- (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium chloride/pharmacology (1)
- (Hydroxymethyl)diphenyl(piperidinoalkyl)silanes (1)
- Sila-difenidol (1)
- Sila-pridinol (1)
- acetylcholine (1)
- animals (1)
- antihypertensive agents / pharmacology (1)
- antimuscarinic and papaverine-like activity (1)
- aorta, abdominal / drug effects (1)
Institute
Studies were performed in the rabbit aortic rings, precontracted with norepinephrine, to determine the subtype(s) of muscarinic receptors involved in endothelium-dependent relaxation and contraction in the absence of endothelium elicited by cholinergic stimuli. Acetylcholine (ACh) and arecaidine propargyl ester (APE), a M2 and M3 agonist, produced a dose-dependent relaxation and contraction in endothelium-intact and endothelium-denuded rabbit aortic rings, respectively. Both of these responses were blocked by the muscarinic receptor antagonist atropine. M1 selective agonist McN-A-343 [4-[N-(3-chlorophenyl)carbamoyloxy]-2-butinyltrimethylammonium+ ++ chloride] did not produce any effect on the tone of precontracted aortic rings. ACh- and APE-induced relaxation in aortic rings with intact endothelium was selectively blocked by M3 receptor antagonists hexahydrosila-difenidol and p-fluoro-hexahydro-sila-difenidol (pA2 of 7.84 and 7.18) but not by M1 antagonist pirenzepine or M2 receptor antagonists AF-DX 116 [11-(2-[(diethylamino)methyl]- 1-piperidinyl]acetyl)-5, 11-dihydro-6H-pyrido-[2,3-b][1,4]-benzo-diazepin-6-one] and methoctramine. ACh- and APE-induced contraction was inhibited by M2 receptor antagonists AF-DX 116 and methoctramine (pA2 of 7.11 and 6.71) but not by pirenzepine, hexahydro-sila-difenidol or p-fluoro-hexahydro-sila-difenidol. ACh- and APE-induced relaxation or contraction were not altered by nicotinic receptor antagonist hexamethonium or cyclooxygenase inhibitor indomethacin. These data suggest that relaxation elicited by cholinergic stimulin in endothelium-intact aortic rings is mediated via release of endothelium-derived relaxing factor consequent to activation of M3 receptors located on endothelial cells, whereas the contraction in aortic rings denuded of their endothelium is mediated via stimulation of M2 receptors located on smooth muscle cells.
In the course of systematic investigations on sila-substituted parasympatholytics the diphenyl(2-aminoethoxymethyl)silanols 3b and 4b (and its carbon analogue 4a) were synthesized and characterized by their physical and chemical properties. In the solid state 4a and 4b form strong O-H---N hydrogen bonds, which are intramolecular (4a) and intermolecular (4b), respectively. 4a and 4b were found to be weak antimuscarinic agents (4b >4a) and strong papaverine-like spasmolytics (4a ≈4b).