Refine
Has Fulltext
- yes (11)
Is part of the Bibliography
- yes (11)
Document Type
- Journal article (11)
Language
- English (11)
Keywords
- Th17 (3)
- T cell receptor excision circles (2)
- CD62L (1)
- CD8 (1)
- CMV (1)
- Cigarette smoking (1)
- DNA methylation (1)
- E. coli (1)
- Exacerbation (1)
- IL-17A-inhibition (1)
Institute
- Kinderklinik und Poliklinik (11)
- Medizinische Klinik und Poliklinik II (3)
- Institut für Humangenetik (2)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (2)
- Frauenklinik und Poliklinik (1)
- Institut für Virologie und Immunbiologie (1)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Pathologisches Institut (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)
Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype.
Background
Homeostatic mechanisms to maintain the T cell compartment diversity indicate an ongoing process of thymic activity and peripheral T cell renewal during human life. These processes are expected to be accelerated after childhood thymectomy and by the influence of cytomegalovirus (CMV) inducing a prematurely aged immune system.
The study aimed to investigate proportional changes and replicative history of CD8+ T cells, of recent thymic emigrants (RTEs) and CD103+ T cells (mostly gut-experienced) and the role of Interleukin-(IL)-7 and IL-7 receptor (CD127)-expressing T cells in thymectomized patients compared to young and old healthy controls.
Results
Decreased proportions of naive and CD31 + CD8+ T cells were demonstrated after thymectomy, with higher proliferative activity of CD127-expressing T cells and significantly shorter relative telomere lengths (RTLs) and lower T cell receptor excision circles (TRECs). Increased circulating CD103+ T cells and a skewed T cell receptor (TCR) repertoire were found after thymectomy similar to elderly persons. Naive T cells were influenced by age at thymectomy and further decreased by CMV.
Conclusions
After childhood thymectomy, the immune system demonstrated constant efforts of the peripheral CD8+ T cell compartment to maintain homeostasis. Supposedly it tries to fill the void of RTEs by peripheral T cell proliferation, by at least partly IL-7-mediated mechanisms and by proportional increase of circulating CD103+ T cells, reminiscent of immune aging in elderly. Although other findings were less significant compared to healthy elderly, early thymectomy demonstrated immunological alterations of CD8+ T cells which mimic features of premature immunosenescence in humans.
Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)\(_{4}\)K\(_{2}\)Ahx\(_{2}\)C\(_{2}\)) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.
Maternal cigarette smoking and its effect on neonatal lymphocyte subpopulations and replication
(2013)
Background
Significant immunomodulatory effects have been described as result of cigarette smoking in adults and pregnant women. However, the effect of cigarette smoking during pregnancy on the lymphocyte subpopulations in newborns has been discussed, controversially.
Methods
In a prospective birth cohort, we analyzed the peripheral lymphocyte subpopulations of smoking (SM) and non-smoking mothers (NSM) and their newborns and the replicative history of neonatal, mostly naive CD4 + CD45RA + T cells by measurements of T-cell-receptor-excision-circles (TRECs), relative telomere lengths (RTL) and the serum cytokine concentrations.
Results
SM had higher lymphocyte counts than NSM. Comparing SM and NSM and SM newborns with NSM newborns, no significant differences in proportions of lymphocyte subpopulations were seen. Regardless of their smoking habits, mothers had significantly lower naive T cells and higher memory and effector T cells than newborns. NSM had significantly lower percentages of CD4 + CD25++ T cells compared to their newborns, which was not significant in SM. There were no differences regarding cytokine concentrations in newborns of SM and NSM. However, NSM had significantly higher Interleukin-7 concentrations than their newborns. Regardless of smoking habits of mothers, newborns had significantly longer telomeres and higher TRECs than their mothers. Newborns of SM had significantly longer telomeres than newborns of NSM.
Conclusions
Apart from higher lymphocyte counts in SM, our results did not reveal differences between lymphocyte subpopulations of SM and NSM and their newborns, respectively. Our finding of significantly longer RTL in newborns of SM may reflect potential harm on lymphocytes, such as cytogenetic damage induced by smoking.
Introduction
Juvenile idiopathic arthritis is a heterogeneous T cell-mediated autoimmune disease with symptoms of premature aging of the immune system (immunosenescence). The present work is an investigation of immunosenescence parameters, such as quantity of naive and CD28- T cells, T cell receptor excision circles, relative telomere length and alterations of peripheral T cell replication, and was performed via comparison of a case of acute exacerbation of juvenile idiopathic arthritis against six patients with juvenile idiopathic arthritis with disease remission and six age-matched healthy donors over a follow-up course of 12 months.
Case presentation
Phenotypical T cell characterization and intracellular interferon γ, tumor necrosis factor α, and interleukin 2 production were studied in peripheral blood mononuclear cells from seven patients with juvenile idiopathic arthritis and six healthy control donors, with findings determined by flow cytometry. T cell receptor excision circles and relative telomere length quantification were performed on deoxyribonucleic acid isolated from naive (CD4+CD28+CD45RA+) T cells and investigated via reverse transcription polymerase chain reaction. Ki67 expression was studied by immunohistochemistry on naive T cells. The non-parametric Mann-Whitney U test and Wilcoxon test for two independent groups of variables were used to compare healthy donors with patients with juvenile idiopathic arthritis. During follow-up, patients with juvenile idiopathic arthritis showed lower total counts of naive and CD28-expressing T cells compared to healthy donors. Acute exacerbation led to low naive and CD28+ T cell populations and elevated proportions of Ki67-expressing CD4+ naive T cells. In conditions of exacerbation, T cell receptor excision circle numbers were in the lower range in patients with juvenile idiopathic arthritis and increased after follow-up. Healthy donors showed significantly higher relative telomere lengths compared to patients with juvenile idiopathic arthritis.
Conclusions
This investigation illustrates that the changes in T cell homeostasis in patients with juvenile idiopathic arthritis may be the result of several mechanisms, such as diminished thymus function and peripheral exertions to maintain the peripheral T cell pool. The results also demonstrate that hallmarks of immunosenescence such as decreased naive T cell levels and lower T cell receptor excision circle numbers can only be interpreted together with replication markers such as relative telomere length or Ki67 expression.
Background
Alterations in the naive T cell subpopulations have been demonstrated in patients with T cell mediated autoimmune disorders, reminiscent of immunological changes found in the elderly during immunosenescence, including the switch from CD45RA + to CD45RO + T cells and decreased thymic function with increased compensatory proliferative mechanisms, partly associated with latent Cytomegalovirus (CMV) infection. The present study was aimed to investigate proportions of lymphocytes, their relation to CMV-seropositivity and the replicative history of CD45RA + expressing T cells in Hashimoto’s thyroiditis (HT, n = 18) and healthy controls (HC, n = 70).
Methods
Proportions of peripheral T cells were investigated by flow cytometry. The replicative history was assessed by T cell receptor excision circles (TRECs) and relative telomere length (RTL). Expression of CD62L was analyzed by immunohistochemistry in thyroid sections. The role of CMV was assessed by serology, ELISPOT assay and in situ hybridization.
Results
Our results demonstrated a significant increase of CD28-negative T cells, associated with CMV-seropositivity in HT patients. HT showed abundant CD45RO + T cells with peripheral loss of CD62L-expressing CD8 + CD45RA + T cells, the latter mainly depending on disease duration. CD62L was expressed in thyroid lymphocyte infiltrations. The diagnosis of HT and within the HT group CMV-seropositivity were the main determinants for the loss of CD28 expression. RTL was not different between HC and HT. HT showed significantly lower TRECs in CD4 + CD45RA + T cells compared to HC.
Conclusions
Patients with HT display a peripheral T cell phenotype reminiscent of findings in elderly persons or other autoimmune disorders. Whether these mechanisms are primary or secondary to the immunological alterations of autoimmune conditions should be investigated in longitudinal studies which may open research on new therapeutic regimes for treatment of HT and associated autoimmune diseases.
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)\(_2\)K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.
IL-9-producing Th9 cells display a group of helper T cells with similarities to Th17 and Th2 T cells and have been shown to be involved in synovial inflammation in rheumatoid arthritis (RA) patients. So far, it is unclear which parameters drive Th9 differentiation in lymphocytes derived from RA patients compared to immunologically healthy individuals and whether autocrine mechanisms are able to enhance Th9 polarization. Further, parallel pathways of induction of IL-17-producing cells with Th9 phenotype have to be distinguished from exclusively Th9-inductive mechanisms. Thus, the present study aimed to determine the parameters of Th9 induction by simulation in a standardized inflammatory cytokine milieu.Peripheral naive and non-naive T cells of RA patients and healthy donors (HD) were cultured under Th9 and Th17-driving conditions and phenotypically analyzed by flow cytometry and molecular analysis.Our findings indicate a similar differentiation pathway of Th9 and Th17 cells and similar distributions of IL-9+ T cells in RA and HD regardless of Th9- or Th17-promoting cytokine milieus. Whereas the magnitude and direction of Th9- or Th17-polarization was about the same in RA and HD, IL-17+ CD4+ T cells were significantly stimulated by Th17-inducing conditions in HD. In conclusion, the results indicate that Th9- and Th17-inducing cytokine conditions mimicking autoimmune inflammation in RA may have similar stimulatory effects regarding polarization of peripheral naive and non-naive T cells into Th9 or Th17 cells. The results suggest that the differentiation of Th9 cells may be also induced by Th17-driving conditions.